a.National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Key Laboratory of Functional Polymer Materials, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
b.Beijing Institute of Aeronautical Materials, Beijing 100095, China
yihuang@nankai.edu.cn
Scan for full text
Wen-Le Ma, Zhi-Hao Cai, Yi Zhang, 等. An Overview of Stretchable Supercapacitors Based on Carbon Nanotube and Graphene[J]. Chinese Journal of Polymer Science, 2020,38(5):491-505.
Wen-Le Ma, Zhi-Hao Cai, Yi Zhang, et al. An Overview of Stretchable Supercapacitors Based on Carbon Nanotube and Graphene[J]. Chinese Journal of Polymer Science, 2020,38(5):491-505.
Wen-Le Ma, Zhi-Hao Cai, Yi Zhang, 等. An Overview of Stretchable Supercapacitors Based on Carbon Nanotube and Graphene[J]. Chinese Journal of Polymer Science, 2020,38(5):491-505. DOI: 10.1007/s10118-020-2386-x.
Wen-Le Ma, Zhi-Hao Cai, Yi Zhang, et al. An Overview of Stretchable Supercapacitors Based on Carbon Nanotube and Graphene[J]. Chinese Journal of Polymer Science, 2020,38(5):491-505. DOI: 10.1007/s10118-020-2386-x.
The wearable demand of modern electronic devices makes flexible and stretchable energy storage device urgently needed. Stretchable and flexible supercapacitors (SCs) are energy storage devices that provide ultrahigh power density while having long-term durability, high security, and electrochemical stability. Among different SCs electrode materials, CNTs and graphene-based materials exhibit great potential in terms of stretchable SCs due to its ultrahigh electrical conductivity, large specific surface area and good mechanical properties. In this review, the state-of-the-art process and achievements in the field of stretchable SCs enabled by CNTs and graphene are presented, which include the novel design strategy, mechanical and electrochemical properties. The final section highlights current challenges and future perspectives on research in this thriving field.
StretchableSupercapacitorsCarbon materialsGrapheneCNTs
Larson, C.; Peele, B.; Li, S.; Robinson, S.; Totaro, M.; Beccai, L.; Mazzolai, B.; Shepherd, R. . Highly stretchable electroluminescent skin for optical signaling and tactile sensing . Science , 2016 . 351 1071 -1074 . DOI:10.1126/science.aac5082http://doi.org/10.1126/science.aac5082 .
Oh, J. Y.; Rondeau-Gagné, S.; Chiu, Y. C.; Chortos, A.; Lissel, F.; Wang, G. J. N.; Schroeder, B. C.; Kurosawa, T.; Lopez, J.; Katsumata, T.; Xu, J.; Zhu, C.; Gu, X.; Bae, W. G.; Kim, Y.; Jin, L.; Chung, J. W.; Tok, J. B. H.; Bao, Z. . Intrinsically stretchable and healable semiconducting polymer for organic transistors . Nature , 2016 . 539 411 DOI:10.1038/nature20102http://doi.org/10.1038/nature20102 .
Gong, S.; Cheng, W. . Toward soft skin-like wearable and implantable energy devices . Adv. Energy Mater. , 2017 . 7 1700648 DOI:10.1002/aenm.201700648http://doi.org/10.1002/aenm.201700648 .
Chen, Y.; Au, J.; Kazlas, P.; Ritenour, A.; Gates, H.; McCreary, M. . Flexible active-matrix electronic ink display . Nature , 2003 . 423 136 -136. .
Chen, X.; Liu, B.; Zhong, C.; Liu, Z.; Liu, J.; Ma, L.; Deng, Y.; Han, X.; Wu, T.; Hu, W.; Lu, J. . Ultrathin Co3O4 layers with large contact area on carbon fibers as high-performance electrode for flexible zinc-air battery integrated with flexible display . Adv. Energy Mater. , 2017 . 7 1700779 DOI:10.1002/aenm.201700779http://doi.org/10.1002/aenm.201700779 .
Cho, J.; Kim, Y.-W.; Kim, B.; Lee, J. G.; Park, B. . A breakthrough in the safety of lithium secondary batteries by coating the cathode material with AlPO4 nanoparticles . Angew. Chem. Int. Ed. , 2013 . 42 1618 -1621. .
Fang, H. T.; Liu, M.; Wang, D. W.; Ren, X. H.; Sun, X. . Fabrication and supercapacitive properties of a thick electrode of carbon nanotube-RuO2 core-shell hybrid material with a high RuO2 loading . Nano Energy , 2013 . 2 1232 -1241 . DOI:10.1016/j.nanoen.2013.05.012http://doi.org/10.1016/j.nanoen.2013.05.012 .
Hu, L.; Wu, H.; La Mantia, F.; Yang, Y.; Cui, Y. . Thin, flexible secondary Li-ion paper batteries . ACS Nano , 2010 . 4 5843 -5848 . DOI:10.1021/nn1018158http://doi.org/10.1021/nn1018158 .
Choi, K. H.; Cho, S. J.; Kim, S. H.; Kwon, Y. H.; Kim, J. Y.; Lee, S. Y. . Thin, deformable, and safety-reinforced plastic crystal polymer electrolytes for high-performance flexible lithium-ion batteries . Adv. Energy Mater. , 2014 . 24 44 -52. .
Lang, X.; Hirata, A.; Fujita, T.; Chen, M. . Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors . Nat. Nanotechnol. , 2011 . 6 232 DOI:10.1038/nnano.2011.13http://doi.org/10.1038/nnano.2011.13 .
Pech, D.; Brunet, M.; Durou, H.; Huang, P.; Mochalin, V.; Gogotsi, Y.; Taberna, P. L.; Simon, P. . Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon . Nat. Nanotechnol. , 2010 . 5 651 DOI:10.1038/nnano.2010.162http://doi.org/10.1038/nnano.2010.162 .
Acerce, M.; Voiry, D.; Chhowalla, M. . Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials . Nat. Nanotechnol. , 2015 . 10 313 DOI:10.1038/nnano.2015.40http://doi.org/10.1038/nnano.2015.40 .
Simon, P.; Gogotsi, Y.; Dunn, B. . Where do batteries end and supercapacitors begin? . Science , 2014 . 343 1210 -1211 . DOI:10.1126/science.1249625http://doi.org/10.1126/science.1249625 .
Ji, H.; Zhao, X.; Qiao, Z.; Jung, J.; Zhu, Y.; Lu, Y.; Zhang, L. L.; MacDonald, A. H.; Ruoff, R. S. . Capacitance of carbon-based electrical double-layer capacitors . Nat. Commun. , 2014 . 5 3317 DOI:10.1038/ncomms4317http://doi.org/10.1038/ncomms4317 .
Wei, L.; Yushin, G. . Nanostructured activated carbons from natural precursors for electrical double layer capacitors . Nano Energy , 2012 . 1 552 -565 . DOI:10.1016/j.nanoen.2012.05.002http://doi.org/10.1016/j.nanoen.2012.05.002 .
Zhai, T.; Wan, L.; Sun, S.; Chen, Q.; Sun, J.; Xia, Q.; Xia, H. . Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudocapacitors . Adv. Mater. , 2017 . 29 1604167 DOI:10.1002/adma.201604167http://doi.org/10.1002/adma.201604167 .
Brezesinski, T.; Wang, J.; Tolbert, S. H.; Dunn, B. . Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors . Nat. Mater. , 2010 . 9 146 DOI:10.1038/nmat2612http://doi.org/10.1038/nmat2612 .
Thangavel, R.; Kaliyappan, K.; Kang, K.; Sun, X.; Lee, Y. S. . Going beyond lithium hybrid capacitors: proposing a new high-performing sodium hybrid capacitor system for next-generation hybrid vehicles made with bio-inspired activated carbon . Adv. Energy Mater. , 2016 . 6 1502199 DOI:10.1002/aenm.201502199http://doi.org/10.1002/aenm.201502199 .
Li, B.; Dai, F.; Xiao, Q.; Yang, L.; Shen, J.; Zhang, C.; Cai, M. . Nitrogen-doped activated carbon for a high energy hybrid supercapacitor . Energy Environ. Sci. , 2016 . 9 102 -106 . DOI:10.1039/C5EE03149Dhttp://doi.org/10.1039/C5EE03149D .
Qu, G.; Cheng, J.; Li, X.; Yuan, D.; Chen, P.; Chen, X.; Wang, B.; Peng, H. . A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode . Adv. Mater. , 2016 . 28 3646 -3652 . DOI:10.1002/adma.201600689http://doi.org/10.1002/adma.201600689 .
Xu, J.; Tan, Z.; Zeng, W.; Chen, G.; Wu, S.; Zhao, Y.; Ni, K.; Tao, Z.; Ikram, M.; Ji, H.; Zhu, Y. . A hierarchical carbon derived from sponge-templated activation of graphene oxide for high-performance supercapacitor electrodes . Adv. Mater. , 2016 . 28 5222 -5228 . DOI:10.1002/adma.201600586http://doi.org/10.1002/adma.201600586 .
Sui, Z. Y.; Meng, Y. N.; Xiao, P. W.; Zhao, Z. Q.; Wei, Z. X.; Han, B. H. . Nitrogen-doped graphene aerogels as efficient supercapacitor electrodes and gas adsorbents . ACS Appl. Mater. Interfaces , 2015 . 7 1431 -1438 . DOI:10.1021/am5042065http://doi.org/10.1021/am5042065 .
Zhu, J.; Childress, A. S.; Karakaya, M.; Dandeliya, S.; Srivastava, A.; Lin, Y.; Rao, A. M.; Podila, R. . Defect-engineered graphene for high-energy- and high-power-density supercapacitor devices . Adv. Mater. , 2016 . 28 7185 -7192 . DOI:10.1002/adma.201602028http://doi.org/10.1002/adma.201602028 .
Strauss, V.; Marsh, K.; Kowal, M. D.; El-Kady, M.; Kaner, R. B. . A simple route to porous graphene from carbon nanodots for supercapacitor applications . Adv. Mater. , 2018 . 30 1704449 DOI:10.1002/adma.201704449http://doi.org/10.1002/adma.201704449 .
An, K. H.; Kim, W. S.; Park, Y. S.; Choi, Y. C.; Lee, S. M.; Chung, D. C.; Bae, D. J.; Lim, S. C.; Lee, Y. H. . Supercapacitors using single-walled carbon nanotube electrodes . Adv. Mater. , 2001 . 13 497 -500 . DOI:10.1002/1521-4095(200104)13:7<497::AID-ADMA497>3.0.CO;2-Hhttp://doi.org/10.1002/1521-4095(200104)13:7<497::AID-ADMA497>3.0.CO;2-H .
Hu, S.; Rajamani, R.; Yu, X. . Flexible solid-state paper-based carbon nanotube supercapacitor . Appl. Phys. Lett. , 2012 . 100 104103 DOI:10.1063/1.3691948http://doi.org/10.1063/1.3691948 .
Kaempgen, M.; Chan, C. K.; Ma, J.; Cui, Y.; Gruner, G. . Printable thin film supercapacitors using single-walled carbon nanotubes . Nano Lett. , 2009 . 9 1872 -1876 . DOI:10.1021/nl8038579http://doi.org/10.1021/nl8038579 .
Yu, J.; Lu, W.; Pei, S.; Gong, K.; Wang, L.; Meng, L.; Huang, Y.; Smith, J. P.; Booksh, K. S.; Li, Q.; Byun, J. H.; Oh, Y.; Yan, Y.; Chou, T. W. . Omnidirectionally stretchable high-performance supercapacitor based on isotropic buckled carbon nanotube films . ACS Nano , 2016 . 10 5204 -5211 . DOI:10.1021/acsnano.6b00752http://doi.org/10.1021/acsnano.6b00752 .
Zhao, M. Q.; Ren, C. E.; Ling, Z.; Lukatskaya, M. R.; Zhang, C.; van Aken, K. L.; Barsoum, M. W.; Gogotsi, Y . Flexible MXene/carbon nanotube composite paper with high volumetric capacitance . Adv. Mater. , 2015 . 27 339 -345 . DOI:10.1002/adma.201404140http://doi.org/10.1002/adma.201404140 .
Redondo, E.; Carretero-González, J.; Goikolea, E.; Ségalini, J.; Mysyk, R. . Effect of pore texture on performance of activated carbon supercapacitor electrodes derived from olive pits . Electrochim. Acta , 2015 . 160 178 -184 . DOI:10.1016/j.electacta.2015.02.006http://doi.org/10.1016/j.electacta.2015.02.006 .
Li, B.; Dai, F.; Xiao, Q.; Yang, L.; Shen, J.; Zhang, C.; Cai, M. . Activated carbon from biomass transfer for high-energy density lithium-ion supercapacitors . Adv. Energy Mater. , 2016 . 6 1600802 DOI:10.1002/aenm.201600802http://doi.org/10.1002/aenm.201600802 .
Hwang, J. Y.; Li, M.; El-Kady, M. F.; Kaner, R. B. . Next-generation activated carbon supercapacitors: a simple step in electrode processing leads to remarkable gains in energy density . Adv. Funct. Mater. , 2017 . 27 1605745 DOI:10.1002/adfm.201605745http://doi.org/10.1002/adfm.201605745 .
Hulicova-Jurcakova, D.; Seredych, M.; Lu, G. Q.; Bandosz, T. J. . Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors . Adv. Funct. Mater. , 2009 . 19 438 -447 . DOI:10.1002/adfm.200801236http://doi.org/10.1002/adfm.200801236 .
Jiang, H.; Ma, J.; Li, C. . Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes . Adv. Mater. , 2012 . 24 4197 -4202 . DOI:10.1002/adma.201104942http://doi.org/10.1002/adma.201104942 .
Lin, T.; Chen, I. W.; Liu, F.; Yang, C.; Bi, H.; Xu, F.; Huang, F. . Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage . Science , 2015 . 350 1508 -1513 . DOI:10.1126/science.aab3798http://doi.org/10.1126/science.aab3798 .
Wang, D. W.; Li, F.; Chen, Z. G.; Lu, G. Q.; Cheng, H. M. . Synthesis and electrochemical property of boron-doped mesoporous carbon in supercapacitor . Chem. Mater. , 2008 . 20 7195 -7200 . DOI:10.1021/cm801729yhttp://doi.org/10.1021/cm801729y .
Li, W.; Zhang, F.; Dou, Y.; Wu, Z.; Liu, H.; Qian, X.; Gu, D.; Xia, Y.; Tu, B.; Zhao, D. . A self-template strategy for the synthesis of mesoporous carbon nanofibers as advanced supercapacitor electrodes . Adv. Energy Mater. , 2011 . 1 382 -386 . DOI:10.1002/aenm.201000096http://doi.org/10.1002/aenm.201000096 .
Wang, J. G.; Liu, H.; Sun, H.; Hua, W.; Wang, H.; Liu, X.; Wei, B. . One-pot synthesis of nitrogen-doped ordered mesoporous carbon spheres for high-rate and long-cycle life supercapacitors . Carbon , 2018 . 127 85 -92 . DOI:10.1016/j.carbon.2017.10.084http://doi.org/10.1016/j.carbon.2017.10.084 .
Su, H.; Huang, H.; Zhang, H.; Chu, X.; Zhang, B.; Gu, B.; Zheng, X.; Wu, S.; He, W.; Yan, C.; Chen, J.; Yang, W. . In situ direct method to massively prepare hydrophilic porous carbide-derived carbons for high-performance supercapacitors . ACS Appl. Energy Mater. , 2018 . 1 3544 -3553 . DOI:10.1021/acsaem.8b00764http://doi.org/10.1021/acsaem.8b00764 .
John, C.; Celine, L.; Pierre-Louis, T.; Patrice, S.; Yury, G. . Monolithic carbide-derived carbon films for micro-supercapacitors . Science , 2010 . 328 480 -483 . DOI:10.1126/science.1184126http://doi.org/10.1126/science.1184126 .
Lu, Q.; Chen, J. G.; Xiao, J. Q. . Nanostructured electrodes for high-performance pseudocapacitors . Angew. Chem. Int. Ed. , 2013 . 52 1882 -1889 . DOI:10.1002/anie.201203201http://doi.org/10.1002/anie.201203201 .
Liu, Y.; Zhou, J.; Tang, J.; Tang, W. . Three-dimensional, chemically bonded polypyrrole/bacterial cellulose/graphene composites for high-performance supercapacitors . Chem. Mater. , 2015 . 27 7034 -7041 . DOI:10.1021/acs.chemmater.5b03060http://doi.org/10.1021/acs.chemmater.5b03060 .
Kashani, H.; Chen, L.; Ito, Y.; Han, J.; Hirata, A.; Chen, M. . Bicontinuous nanotubular graphene-polypyrrole hybrid for high performance flexible supercapacitors . Nano Energy , 2016 . 19 391 -400 . DOI:10.1016/j.nanoen.2015.11.029http://doi.org/10.1016/j.nanoen.2015.11.029 .
Alves, A. P. P.; Koizumi, R.; Samanta, A.; Machado, L. D.; Singh, A. K.; Galvao, D. S.; Silva, G. G.; Tiwary, C. S.; Ajayan, P. M. . One-step electrodeposited 3D-ternary composite of zirconia nanoparticles, rGO and polypyrrole with enhanced supercapacitor performance . Nano Energy , 2017 . 31 225 -232 . DOI:10.1016/j.nanoen.2016.11.018http://doi.org/10.1016/j.nanoen.2016.11.018 .
Zhu, J.; Feng, T.; Du, X.; Wang, J.; Hu, J.; Wei, L. . High performance asymmetric supercapacitor based on polypyrrole/graphene composite and its derived nitrogen-doped carbon nano-sheets . J. Power Sources , 2017 . 346 120 -127 . DOI:10.1016/j.jpowsour.2017.02.034http://doi.org/10.1016/j.jpowsour.2017.02.034 .
Zhang, K.; Zhang, L. L.; Zhao, X. S.; Wu, J. . Graphene/polyaniline nanofiber composites as supercapacitor electrodes . Chem. Mater. , 2010 . 22 1392 -1401 . DOI:10.1021/cm902876uhttp://doi.org/10.1021/cm902876u .
Wu, Q.; Xu, Y.; Yao, Z.; Liu, A.; Shi, G. . Supercapacitors based on flexible graphene/polyaniline nanofiber composite films . ACS Nano , 2010 . 4 1963 -1970 . DOI:10.1021/nn1000035http://doi.org/10.1021/nn1000035 .
Yan, J.; Wei, T.; Fan, Z.; Qian, W.; Zhang, M.; Shen, X.; Wei, F. . Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors . J. Power Sources , 2010 . 195 3041 -3045 . DOI:10.1016/j.jpowsour.2009.11.028http://doi.org/10.1016/j.jpowsour.2009.11.028 .
Wang, Y.; Yang, X.; Pandolfo, A.G.; Ding, J.; Li, D. . High-rate and high-volumetric capacitance of compact graphene-polyaniline hydrogel electrodes . Adv. Energy Mater. , 2016 . 6 1600185 DOI:10.1002/aenm.201600185http://doi.org/10.1002/aenm.201600185 .
Liu, Y.; Weng, B.; Razal, J. M.; Xu, Q.; Zhao, C.; Hou, Y.; Seyedin, S.; Jalili, R.; Wallace, G. G.; Chen, J. . High-performance flexible all-solid-state supercapacitor from large free-standing graphene-PEDOT/PSS films . Sci. Rep. , 2015 . 5 17045 DOI:10.1038/srep17045http://doi.org/10.1038/srep17045 .
Cho, S.; Kim, M.; Jang, J. . Screen-printable and flexible RuO2 nanoparticle-decorated PEDOT:PSS/graphene nanocomposite with enhanced electrical and electrochemical performances for high-capacity supercapacitor . ACS Appl. Mater. Interfaces , 2015 . 7 10213 -10227 . DOI:10.1021/acsami.5b00657http://doi.org/10.1021/acsami.5b00657 .
Zhang, Q.; Wang, X.; Pan, Z.; Sun, J.; Zhao, J.; Zhang, J.; Zhang, C.; Tang, L.; Luo, J.; Song, B.; Zhang, Z.; Lu, W.; Li, Q.; Zhang, Y.; Yao, Y. . Wrapping aligned carbon nanotube composite sheets around vanadium nitride nanowire arrays for asymmetric coaxial fiber-shaped supercapacitors with ultrahigh energy density . Nano Lett. , 2017 . 17 2719 -2726 . DOI:10.1021/acs.nanolett.7b00854http://doi.org/10.1021/acs.nanolett.7b00854 .
Zhao, D.; Zhang, Q.; Chen, W.; Yi, X.; Liu, S.; Wang, Q.; Liu, Y.; Li, J.; Li, X.; Yu, H. . Highly flexible and conductive cellulose-mediated PEDOT:PSS/MWCNT composite films for supercapacitor electrodes . ACS Appl. Mater. Interfaces , 2017 . 9 13213 -13222 . DOI:10.1021/acsami.7b01852http://doi.org/10.1021/acsami.7b01852 .
Ye, J. S.; Cui, H. F.; Liu, X.; Lim, T. M.; Zhang, W. D.; Sheu, F. S. . Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors . Small , 2005 . 1 560 -565 . DOI:10.1002/smll.200400137http://doi.org/10.1002/smll.200400137 .
Wu, Z. S.; Wang, D. W.; Ren, W.; Zhao, J.; Zhou, G.; Li, F.; Cheng, H. M. . Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors . Adv. Funct. Mater. , 2010 . 20 3595 -3602 . DOI:10.1002/adfm.201001054http://doi.org/10.1002/adfm.201001054 .
Hwang, J. Y.; El-Kady, M. F.; Wang, Y.; Wang, L.; Shao, Y.; Marsh, K.; Ko, J. M.; Kaner, R. B. . Direct preparation and processing of graphene/RuO2 nanocomposite electrodes for high-performance capacitive energy storage . Nano Energy , 2015 . 18 57 -70 . DOI:10.1016/j.nanoen.2015.09.009http://doi.org/10.1016/j.nanoen.2015.09.009 .
Sheng, L.; Jiang, L.; Wei, T.; Fan, Z. . High volumetric energy density asymmetric supercapacitors based on well-balanced graphene and graphene-MnO2 electrodes with densely stacked architectures . Small , 2016 . 12 5217 -5227 . DOI:10.1002/smll.201601722http://doi.org/10.1002/smll.201601722 .
Jia, H.; Cai, Y.; Lin, J.; Liang, H.; Qi, J.; Cao, J.; Feng, J.; Fei, W. . Heterostructural graphene quantum dot/MnO2 nanosheets toward high-potential window electrodes for high-performance supercapacitors . Adv. Sci. , 2018 . 5 1700887 DOI:10.1002/advs.201700887http://doi.org/10.1002/advs.201700887 .
Fan, Z.; Yan, J.; Wei, T.; Zhi, L.; Ning, G.; Li, T.; Wei, F. . Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density . Adv. Funct. Mater. , 2011 . 21 2366 -2375 . DOI:10.1002/adfm.201100058http://doi.org/10.1002/adfm.201100058 .
Xia, X. H.; Tu, J. P.; Wang, X. L.; Gu, C. D.; Zhao, X. B. . Mesoporous Co3O4 monolayer hollow-sphere array as electrochemical pseudocapacitor material . Chem. Commun. , 2011 . 47 5786 -5788 . DOI:10.1039/c1cc11281chttp://doi.org/10.1039/c1cc11281c .
Yang, L.; Cheng, S.; Ding, Y.; Zhu, X.; Wang, Z. L.; Liu, M. . Hierarchical network architectures of carbon fiber paper supported cobalt oxide nanonet for high-capacity pseudocapacitors . Nano Lett. , 2012 . 12 321 -325 . DOI:10.1021/nl203600xhttp://doi.org/10.1021/nl203600x .
Su, F.; Lv, X.; Miao, M. . High-performance two-ply yarn supercapacitors based on carbon nanotube yarns dotted with Co3O4 and NiO nanoparticles . Small , 2015 . 11 854 -861 . DOI:10.1002/smll.201401862http://doi.org/10.1002/smll.201401862 .
Lin, J.; Jia, H.; Liang, H.; Chen, S.; Cai, Y.; Qi, J.; Qu, C.; Cao, J.; Fei, W.; Feng, J. . In situ synthesis of vertical standing nanosized NiO encapsulated in graphene as electrodes for high-performance supercapacitors . Adv. Sci. , 2018 . 5 1700687 DOI:10.1002/advs.201700687http://doi.org/10.1002/advs.201700687 .
Zhao, B.; Song, J.; Liu, P.; Xu, W.; Fang, T.; Jiao, Z.; Zhang, H.; Jiang, Y. . Monolayer graphene/NiO nanosheets with two-dimension structure for supercapacitors . J. Mater. Chem. , 2011 . 21 18792 -18798 . DOI:10.1039/c1jm13016ahttp://doi.org/10.1039/c1jm13016a .
Bai, Y.; Du, M.; Chang, J.; Sun, J.; Gao, L. . Supercapacitors with high capacitance based on reduced graphene oxide/carbon nanotubes/NiO composite electrodes . J. Mater. Chem. , 2014 . 2 3834 -3840 . DOI:10.1039/C3TA15004Fhttp://doi.org/10.1039/C3TA15004F .
Oliveira, A. H. P.; Oliveira, H. P. . Carbon nanotube/polypyrrole nanofibers core-shell composites decorated with titanium dioxide nanoparticles for supercapacitor electrodes . J. Power Sources , 2014 . 268 45 -49 . DOI:10.1016/j.jpowsour.2014.06.027http://doi.org/10.1016/j.jpowsour.2014.06.027 .
Kim, H.; Cho, M. Y.; Kim, M. H.; Park, K. Y.; Gwon, H.; Lee, Y.; Roh, K. C.; Kang, K. . A novel high-energy hybrid supercapacitor with an anatase TiO2-reduced graphene oxide anode and an activated carbon cathode . Adv. Energy Mater. , 2013 . 3 1500 -1506 . DOI:10.1002/aenm.201300467http://doi.org/10.1002/aenm.201300467 .
Zhang, Z.; Xiao, F.; Guo, Y.; Wang, S.; Liu, Y. . One-pot self-assembled three-dimensional TiO2-graphene hydrogel with improved adsorption capacities and photocatalytic and electrochemical activities . ACS Appl. Mater. Interfaces , 2013 . 5 2227 -2233 . DOI:10.1021/am303299rhttp://doi.org/10.1021/am303299r .
Wang, H.; Yi, H.; Chen, X.; Wang, X. . One-step strategy to three-dimensional graphene/VO2 nanobelt composite hydrogels for high performance supercapacitors . J. Mater. Chem. A , 2014 . 2 1165 -1173 . DOI:10.1039/C3TA13932Hhttp://doi.org/10.1039/C3TA13932H .
Lee, M.; Wee, B. H.; Hong, J. D. . High performance flexible supercapacitor electrodes composed of ultralarge graphene sheets and vanadium dioxide . Adv. Energy Mater. , 2015 . 5 1401890 DOI:10.1002/aenm.201401890http://doi.org/10.1002/aenm.201401890 .
Perera, S. D.; Patel, B.; Nijem, N.; Roodenko, K.; Seitz, O.; Ferraris, J. P.; Chabal, Y. J.; Balkus Jr., K. J. . Vanadium oxide nanowire-carbon nanotube binder-free flexible electrodes for supercapacitors . Adv. Energy Mater. , 2011 . 1 936 -945 . DOI:10.1002/aenm.201100221http://doi.org/10.1002/aenm.201100221 .
Zhang, L. L.; Zhao, X. S. . Carbon-based materials as supercapacitor electrodes . Chem. Soc. Rev. , 2009 . 38 2520 -2531 . DOI:10.1039/B813846Jhttp://doi.org/10.1039/B813846J .
Liu, C.; Yu, Z.; Neff, D.; Zhamu, A.; Jang, B. Z. . Graphene-based supercapacitor with an ultrahigh energy density . Nano Lett. , 2010 . 10 4863 -4868 . DOI:10.1021/nl102661qhttp://doi.org/10.1021/nl102661q .
Sun, X.; Sun, H.; Li, H.; Peng, H. . Developing polymer composite materials: carbon nanotubes or graphene? . Adv. Mater. , 2013 . 25 5153 -5176. .
Yang, Z.; Tian, J.; Yin, Z.; Cui, C.; Qian, W.; Wei, F. . Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: a review . Carbon , 2019 . 141 467 -480 . DOI:10.1016/j.carbon.2018.10.010http://doi.org/10.1016/j.carbon.2018.10.010 .
Xu, P.; Gu, T.; Cao, Z.; Wei, B.; Yu, J.; Li, F.; Byun, J. H.; Lu, W.; Li, Q.; Chou, T. W. . Carbon nanotube fiber based stretchable wire-shaped supercapacitors . Adv. Energy Mater. , 2014 . 4 1300759 DOI:10.1002/aenm.201300759http://doi.org/10.1002/aenm.201300759 .
Yang, Z.; Deng, J.; Chen, X.; Ren, J.; Peng, H. . A highly stretchable, fiber-shaped supercapacitor . Angew. Chem. Int. Ed. , 2013 . 52 13453 -13457 . DOI:10.1002/anie.201307619http://doi.org/10.1002/anie.201307619 .
Chen, T.; Hao, R.; Peng, H.; Dai, L. . High-performance, stretchable, wire-shaped supercapacitors . Angew. Chem. Int. Ed. , 2015 . 54 618 -622. .
Choi, C.; Kim, S. H.; Sim, H. J.; Lee, J. A.; Choi, A. Y.; Kim, Y. T.; Lepró, X.; Spinks, G. M.; Baughman, R. H.; Kim, S. J. . Stretchable, weavable coiled carbon nanotube/MnO2/polymer fiber solid-state supercapacitors . Sci. Rep. , 2015 . 5 9387 DOI:10.1038/srep09387http://doi.org/10.1038/srep09387 .
Zhang, Y.; Bai, W.; Cheng, X.; Ren, J.; Weng, W.; Chen, P.; Fang, X.; Zhang, Z.; Peng, H. . Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs . Angew. Chem. Int. Ed. , 2014 . 53 14564 -14568 . DOI:10.1002/anie.201409366http://doi.org/10.1002/anie.201409366 .
Shang, Y.; Wang, C.; He, X.; Li, J.; Peng, Q.; Shi, E.; Wang, R.; Du, S.; Cao, A.; Li, Y. . Self-stretchable, helical carbon nanotube yarn supercapacitors with stable performance under extreme deformation conditions . Nano Energy , 2015 . 12 401 -409 . DOI:10.1016/j.nanoen.2014.11.048http://doi.org/10.1016/j.nanoen.2014.11.048 .
Huang, Y.; Zhong, M.; Huang, Y.; Zhu, M.; Pei, Z.; Wang, Z.; Xue, Q.; Xie, X.; Zhi, C. . A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte . Nat. Commun. , 2015 . 6 10310 DOI:10.1038/ncomms10310http://doi.org/10.1038/ncomms10310 .
Sun, J.; Huang, Y.; Fu, C.; Wang, Z.; Huang, Y.; Zhu, M.; Zhi, C.; Hu, H. . High-performance stretchable yarn supercapacitor based on PPy@CNTs@urethane elastic fiber core spun yarn . Nano Energy , 2016 . 27 230 -237 . DOI:10.1016/j.nanoen.2016.07.008http://doi.org/10.1016/j.nanoen.2016.07.008 .
Yu, C.; Masarapu, C.; Rong, J.; Wei, B.; Jiang, H. . Stretchable supercapacitors based on buckled single-walled carbon-nanotube macrofilms . Adv. Mater. , 2009 . 21 4793 -4797 . DOI:10.1002/adma.200901775http://doi.org/10.1002/adma.200901775 .
Gu, T.; Wei, B. . Fast and stable redox reactions of MnO2/CNT hybrid electrodes for dynamically stretchable pseudocapacitors . Nanoscale , 2015 . 7 11626 -11632 . DOI:10.1039/C5NR02310Fhttp://doi.org/10.1039/C5NR02310F .
Tang, Q.; Chen, M.; Yang, C.; Wang, W.; Bao, H.; Wang, G. . Enhancing the energy density of asymmetric stretchable supercapacitor based on wrinkled CNT@MnO2 cathode and CNT@polypyrrole anode . ACS Appl. Mater. Interfaces , 2015 . 7 15303 -15313 . DOI:10.1021/acsami.5b03148http://doi.org/10.1021/acsami.5b03148 .
Gu, T.; Wei, B. . High-performance all-solid-state asymmetric stretchable supercapacitors based on wrinkled MnO2/CNT and Fe2O3/CNT macrofilms . J. Mater. Chem. A , 2016 . 4 12289 -12295 . DOI:10.1039/C6TA04712Bhttp://doi.org/10.1039/C6TA04712B .
Lv, T.; Yao, Y.; Li, N.; Chen, T. . Highly stretchable supercapacitors based on aligned carbon nanotube/molybdenum disulfide composites . Angew. Chem. Int. Ed. , 2016 . 55 9191 -9195 . DOI:10.1002/anie.201603356http://doi.org/10.1002/anie.201603356 .
Zhang, Z.; Wang, L.; Li, Y.; Wang, Y.; Zhang, J.; Guan, G.; Pan, Z.; Zheng, G.; Peng, H. . Nitrogen-doped core-sheath carbon nanotube array for highly stretchable supercapacitor . Adv. Energy Mater. , 2017 . 7 1601814 DOI:10.1002/aenm.201601814http://doi.org/10.1002/aenm.201601814 .
Cao, C.; Zhou, Y.; Ubnoske, S.; Zang, J.; Cao, Y.; Henry, P.; Parker, C. B.; Glass, J. T. . Highly stretchable supercapacitors via crumpled vertically aligned carbon nanotube forests . Adv. Energy Mater. , 2019 . 9 1900618 DOI:10.1002/aenm.201900618http://doi.org/10.1002/aenm.201900618 .
He, S.; Cao, J.; Xie, S.; Deng, J.; Gao, Q.; Qiu, L.; Zhang, J.; Wang, L.; Hu, Y.; Peng, H. . Stretchable supercapacitor based on a cellular structure . J. Mater Chem. A , 2016 . 4 10124 -10129 . DOI:10.1039/C6TA03762Chttp://doi.org/10.1039/C6TA03762C .
He, S.; Qiu, L.; Wang, L.; Cao, J.; Xie, S.; Gao, Q.; Zhang, Z.; Zhang, J.; Wang, B.; Peng, H. . A three-dimensionally stretchable high-performance supercapacitor . J. Mater. Chem. A , 2016 . 4 14968 -14973 . DOI:10.1039/C6TA05545Ahttp://doi.org/10.1039/C6TA05545A .
Chen, J. H.; Jang, C.; Xiao, S.; Ishigami, M.; Fuhrer, M. S. . Intrinsic and extrinsic performance limits of graphene devices on SiO2 . Nat. Nanotechnol. , 2008 . 3 206 -209 . DOI:10.1038/nnano.2008.58http://doi.org/10.1038/nnano.2008.58 .
Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. . Superior thermal conductivity of single-layer graphene . Nano Lett. , 2008 . 8 902 -907 . DOI:10.1021/nl0731872http://doi.org/10.1021/nl0731872 .
Zang, J.; Cao, C.; Feng, Y.; Liu, J.; Zhao, X. . Stretchable and high-performance supercapacitors with crumpled graphene papers . Sci. Rep. , 2014 . 4 6492 .
Chen, T.; Xue, Y.; Roy, A. K.; Dai, L. . Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrodes . ACS Nano , 2014 . 8 1039 -1046 . DOI:10.1021/nn405939whttp://doi.org/10.1021/nn405939w .
Xu, P.; Kang, J.; Choi, J. B.; Suhr, J.; Yu, J.; Li, F.; Byun, J. H.; Kim, B. S.; Chou, T. W. . Laminated ultrathin chemical vapor deposition graphene films based stretchable and transparent high-rate supercapacitor . ACS Nano , 2014 . 8 9437 -9445 . DOI:10.1021/nn503570jhttp://doi.org/10.1021/nn503570j .
Xie, Y.; Liu, Y.; Zhao, Y.; Tsang, Y. H.; Lau, S. P.; Huang, H.; Chai, Y. . Stretchable all-solid-state supercapacitor with wavy shaped polyaniline/graphene electrode . J. Mater. Chem. A , 2014 . 2 9142 -9149 . DOI:10.1039/C4TA00734Dhttp://doi.org/10.1039/C4TA00734D .
Qi, D.; Liu, Z.; Liu, Y.; Leow, W. R.; Zhu, B.; Yang, H.; Yu, J.; Wang, W.; Wang, H.; Yin, S.; Chen, X. . Suspended wavy graphene microribbons for highly stretchable microsupercapacitors . Adv. Mater. , 2015 . 27 5559 -5566 . DOI:10.1002/adma.201502549http://doi.org/10.1002/adma.201502549 .
Lamberti, A.; Clerici, F.; Fontana, M.; Scaltrito, L. . A highly stretchable supercapacitor using laser-induced graphene electrodes onto elastomeric substrate . Adv. Energy Mater. , 2016 . 6 1600050 DOI:10.1002/aenm.201600050http://doi.org/10.1002/aenm.201600050 .
Wang, Y.; Shi, Z.; Huang, Y.; Ma, Y.; Wang, C.; Chen, M.; Chen, Y. . Supercapacitor devices based on graphene materials . J. Phys. Chem. C , 2009 . 113 13103 -13107 . DOI:10.1021/jp902214fhttp://doi.org/10.1021/jp902214f .
Huang, Y.; Liang, J.; Chen, Y. . An overview of the applications of graphene-based materials in supercapacitors . Small , 2012 . 8 1805 -1834 . DOI:10.1002/smll.201102635http://doi.org/10.1002/smll.201102635 .
Song, W.; Zhu, J.; Gan, B.; Zhao, S.; Wang, H.; Li, C.; Wang, J. . Flexible, stretchable, and transparent planar microsupercapacitors based on 3D porous laser-induced graphene . Small , 2018 . 14 1702249 DOI:10.1002/smll.201702249http://doi.org/10.1002/smll.201702249 .
Dong, Z.; Jiang, C.; Cheng, H.; Zhao, Y.; Shi, G.; Jiang, L.; Qu, L. . Facile fabrication of light, flexible and multifunctional graphene fibers . Adv. Mater. , 2012 . 24 1856 -1861 . DOI:10.1002/adma.201200170http://doi.org/10.1002/adma.201200170 .
Li, Y.; Sheng, K.; Yuan, W.; Shi, G. . A high-performance flexible fibre-shaped electrochemical capacitor based on electrochemically reduced graphene oxide . Chem. Commun. , 2013 . 49 291 -293 . DOI:10.1039/C2CC37396Chttp://doi.org/10.1039/C2CC37396C .
Cheng, H.; Hu, Y.; Zhao, F.; Dong, Z.; Wang, Y.; Chen, N.; Zhang, Z.; Qu, L. . Moisture-activated torsional graphene-fiber motor . Adv. Mater. , 2014 . 26 2909 -2913 . DOI:10.1002/adma.201305708http://doi.org/10.1002/adma.201305708 .
Meng, Y.; Zhao, Y.; Hu, C.; Cheng, H.; Hu, Y.; Zhang, Z.; Shi, G.; Qu, L. . All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles . Adv. Mater. , 2013 . 25 2326 -2331 . DOI:10.1002/adma.201300132http://doi.org/10.1002/adma.201300132 .
Zang, X.; Zhu, M.; Li, X.; Li, X.; Zhen, Z.; Lao, J.; Wang, K.; Kang, F.; Wei, B.; Zhu, H. . Dynamically stretchable supercapacitors based on graphene woven fabric electrodes . Nano Energy , 2015 . 15 83 -91 . DOI:10.1016/j.nanoen.2015.04.010http://doi.org/10.1016/j.nanoen.2015.04.010 .
Wang, S.; Liu, N.; Su, J.; Li, L.; Long, F.; Zou, Z.; Jiang, X.; Gao, Y. . Highly stretchable and self-healable supercapacitor with reduced graphene oxide based fiber springs . ACS Nano , 2017 . 11 2066 -2074 . DOI:10.1021/acsnano.6b08262http://doi.org/10.1021/acsnano.6b08262 .
Guo, K.; Wang, X.; Hu, L.; Zhai, T.; Li, H.; Yu, N. . Highly stretchable waterproof fiber asymmetric supercapacitors in an integrated structure . ACS Appl. Mater. Interfaces , 2018 . 10 19820 -19827 . DOI:10.1021/acsami.8b05676http://doi.org/10.1021/acsami.8b05676 .
Li, P.; Jin, Z.; Peng, L.; Zhao, F.; Xiao, D.; Jin, Y.; Yu, G. . Stretchable all-gel-state fiber-shaped supercapacitors enabled by macromolecularly interconnected 3D graphene/nanostructured conductive polymer hydrogels . Adv. Mater. , 2018 . 30 1800124 DOI:10.1002/adma.201800124http://doi.org/10.1002/adma.201800124 .
Kim, D.; Shin, G.; Kang, Y. J.; Kim, W.; Ha, J. S. . Fabrication of a stretchable solid-state micro-supercapacitor array . ACS Nano , 2013 . 7 7975 -7982 . DOI:10.1021/nn403068dhttp://doi.org/10.1021/nn403068d .
Gilshteyn, E. P.; Amanbayev, D.; Anisimov, A. S.; Kallio, T.; Nasibulin, A. G. . All-nanotube stretchable supercapacitor with low equivalent series resistance . Sci. Rep. , 2017 . 7 17449 DOI:10.1038/s41598-017-17801-4http://doi.org/10.1038/s41598-017-17801-4 .
Chen, X.; Qiu, L.; Ren, J.; Guan, G.; Lin, H.; Zhang, Z.; Chen, P.; Wang, Y.; Peng, H. . Novel electric double-layer capacitor with a coaxial fiber structure . Adv. Mater. , 2013 . 25 6436 -6441 . DOI:10.1002/adma.201301519http://doi.org/10.1002/adma.201301519 .
Xu, P.; Wei, B.; Cao, Z.; Zheng, J.; Gong, K.; Li, F.; Yu, J.; Li, Q.; Lu, W.; Byun, J. H.; Kim, B. S.; Yan, Y.; Chou, T. W. . Stretchable wire-shaped asymmetric supercapacitors based on pristine and MnO2 coated carbon nanotube fibers . ACS Nano , 2015 . 9 6088 -6096 . DOI:10.1021/acsnano.5b01244http://doi.org/10.1021/acsnano.5b01244 .
Hong, S.; Lee, J.; Do, K.; Lee, M.; Kim, J. H.; Lee, S.; Kim, D. H. . Stretchable electrode based on laterally combed carbon nanotubes for wearable energy harvesting and storage devices . Adv. Funct. Mater. , 2017 . 27 1704353 DOI:10.1002/adfm.201704353http://doi.org/10.1002/adfm.201704353 .
Zhang, Q.; Sun, J.; Pan, Z.; Zhang, J.; Zhao, J.; Wang, X.; Zhang, C.; Yao, Y.; Lu, W.; Li, Q.; Zhang, Y.; Zhang, Z. . Stretchable fiber-shaped asymmetric supercapacitors with ultrahigh energy density . Nano Energy , 2017 . 39 219 -228 . DOI:10.1016/j.nanoen.2017.06.052http://doi.org/10.1016/j.nanoen.2017.06.052 .
Li, M.; Zu, M.; Yu, J.; Cheng, H.; Li, Q. . Stretchable fiber supercapacitors with high volumetric performance based on buckled MnO2/oxidized carbon nanotube fiber electrodes . Small , 2017 . 13 1602994 DOI:10.1002/smll.201602994http://doi.org/10.1002/smll.201602994 .
Yun, T. G.; Hwang, B. I.; Kim, D.; Hyun, S.; Han, S. M. . Polypyrrole-MnO2-coated textile-based flexible-stretchable supercapacitor with high electrochemical and mechanical reliability . ACS Appl. Mater. Interfaces , 2015 . 7 9228 -9234 . DOI:10.1021/acsami.5b01745http://doi.org/10.1021/acsami.5b01745 .
Kim, B. S.; Lee, K.; Kang, S.; Lee, S.; Pyo, J. B.; Choi, I. S.; Char, K.; Park, J. H.; Lee, S. S.; Lee, J.; Son, J. G. . 2D reentrant auxetic structures of graphene/CNT networks for omnidirectionally stretchable supercapacitors . Nanoscale , 2017 . 9 13272 -13280 . DOI:10.1039/C7NR02869Ehttp://doi.org/10.1039/C7NR02869E .
Chen, C.; Cao, J.; Wang, X.; Lu, Q.; Han, M.; Wang, Q.; Dai, H.; Niu, Z.; Chen, J.; Xie, S. . Highly stretchable integrated system for micro-supercapacitor with AC line filtering and UV detector . Nano Energy , 2017 . 42 187 -194 . DOI:10.1016/j.nanoen.2017.10.056http://doi.org/10.1016/j.nanoen.2017.10.056 .
Zhu, Y.; Li, N.; Lv, T.; Yao, Y.; Peng, H.; Shi, J.; Cao, S.; Chen, T. . Ag-doped PEDOT:PSS/CNT composites for thin-film all-solid-state supercapacitors with a stretchability of 480% . J. Mater. Chem. A , 2018 . 6 941 -947 . DOI:10.1039/C7TA09154Khttp://doi.org/10.1039/C7TA09154K .
Liang, X.; Zhao, L.; Wang, Q.; Ma, Y.; Zhang, D. . A dynamic stretchable and self-healable supercapacitor with a CNT/graphene/PANI composite film . Nanoscale , 2018 . 10 22329 -22334 . DOI:10.1039/C8NR07991Ahttp://doi.org/10.1039/C8NR07991A .
Chen, C. R.; Qin, H.; Cong, H. P.; Yu, S. H. . A highly stretchable and real-time healable supercapacitor . Adv. Mater. , 2019 . 31 1900573 DOI:10.1002/adma.201900573http://doi.org/10.1002/adma.201900573 .
Jeong, H. T.; Du, J. F.; Kim, Y. R.; Raj, C. J.; Kim, B. C. . Electrochemical performances of highly stretchable polyurethane (PU) supercapacitors based on nanocarbon materials composites . J. Alloy. Compd. , 2019 . 777 67 -72 . DOI:10.1016/j.jallcom.2018.10.232http://doi.org/10.1016/j.jallcom.2018.10.232 .
Li, F.; Chen, J.; Wang, X.; Xue, M.; Chen, G. F. . Stretchable supercapacitor with adjustable volumetric capacitance based on 3D interdigital electrodes . Adv. Funct. Mater. , 2015 . 25 4601 -4606 . DOI:10.1002/adfm.201500718http://doi.org/10.1002/adfm.201500718 .
Li, N.; Lv, T.; Yao, Y.; Li, H.; Liu, K.; Chen, T. . Compact graphene/MoS2 composite films for highly flexible and stretchable all-solid-state supercapacitors . J. Mater. Chem. A , 2017 . 5 3267 -3273 . DOI:10.1039/C6TA10165Hhttp://doi.org/10.1039/C6TA10165H .
Li, K.; Huang, Y.; Liu, J.; Sarfraz, M.; Agboola, P. O.; Shakir, I.; Xu, Y. . A three-dimensional graphene framework-enabled high-performance stretchable asymmetric supercapacitor . J. Mater. Chem. A , 2018 . 6 1802 -1808 . DOI:10.1039/C7TA09041Bhttp://doi.org/10.1039/C7TA09041B .
Guo, F.; Jiang, Y.; Xu, Z.; Xiao, Y.; Fang, B.; Liu, Y.; Gao, W.; Zhao, P.; Wang, H.; Gao, C. . Highly stretchable carbon aerogels . Nat. Commun. , 2018 . 9 881 DOI:10.1038/s41467-018-03268-yhttp://doi.org/10.1038/s41467-018-03268-y .
Chen, H.; Li, Y.; Feng, Y.; Lv, P.; Zhang, P.; Feng, W. . Electrodeposition of carbon nanotube/carbon fabric composite using cetyltrimethylammonium bromide for high performance capacitor . Electrochim. Acta , 2012 . 60 449 -455 . DOI:10.1016/j.electacta.2011.11.101http://doi.org/10.1016/j.electacta.2011.11.101 .
Lv, P.; Zhang, P.; Feng, Y.; Li, Y.; Feng, W. . High-performance electrochemical capacitors using electrodeposited MnO2 on carbon nanotube array grown on carbon fabric . Electrochim. Acta , 2012 . 78 515 -523 . DOI:10.1016/j.electacta.2012.06.085http://doi.org/10.1016/j.electacta.2012.06.085 .
Zhang, Q.; Li, Y.; Feng, Y.; Feng, W. . Electropolymerization of graphene oxide/polyaniline composite for high-performance supercapacitor . Electrochim. Acta , 2013 . 90 95 -100 . DOI:10.1016/j.electacta.2012.11.035http://doi.org/10.1016/j.electacta.2012.11.035 .
Li, D.; Li, Y.; Feng, Y.; Hu, W.; Feng, W. . Hierarchical graphene oxide/polyaniline nanocomposites prepared by interfacial electrochemical polymerization for flexible solid-state supercapacitors . J. Mater. Chem. A , 2015 . 3 2135 -2143 . DOI:10.1039/C4TA05643Dhttp://doi.org/10.1039/C4TA05643D .
Peng, L.; Feng, Y.; Lv, P.; Lei, D.; Shen, Y.; Li, Y.; Feng, W. . Transparent, conductive, and flexible multiwalled carbon nanotube/graphene hybrid electrodes with two three-dimensional microstructures . J. Phys. Chem. C , 2012 . 116 4970 -4978 . DOI:10.1021/jp209180jhttp://doi.org/10.1021/jp209180j .
Lv, P.; Feng, Y. Y.; Li, Y.; Feng, W. . Carbon fabric-aligned carbon nanotube/MnO2/conducting polymers ternary composite electrodes with high utilization and mass loading of MnO2 for super-capacitors . J. Power Sources , 2012 . 220 160 -168 . DOI:10.1016/j.jpowsour.2012.07.073http://doi.org/10.1016/j.jpowsour.2012.07.073 .
Feng, W.; Zhang, Q.; Li, Y.; Feng, Y. . Preparation of sulfonated graphene/polyaniline composites in neutral solution for high-performance supercapacitors . J. Solid State Electr. , 2014 . 18 1127 -1135 . DOI:10.1007/s10008-013-2369-8http://doi.org/10.1007/s10008-013-2369-8 .
Chen, Y.; Li, Y.; Yao, F.; Peng, C.; Cao, C.; Feng, Y.; Feng, W. . Nitrogen and fluorine co-doped holey graphene hydrogel as a binder-free electrode material for flexible solid-state supercapacitors . Sustain. Energ. Fuels , 2019 . 3 2237 -2245 . DOI:10.1039/C9SE00142Ehttp://doi.org/10.1039/C9SE00142E .
Lv, P.; Zhang, P.; Li, F.; Li, Y.; Feng, Y.; Feng W. . Vertically aligned carbon nanotubes grown on carbon fabric with high rate capability for super-capacitors . Synth. Met. , 2012 . 162 1090 -1096 . DOI:10.1016/j.synthmet.2012.04.029http://doi.org/10.1016/j.synthmet.2012.04.029 .
0
浏览量
3
Downloads
2
CSCD
关联资源
相关文章
相关作者
相关机构