a.Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
b.Beijing Graphene Institute, Beijing 100095, China
c.Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
yingyingzhang@tsinghua.edu.cn (Y.Z.)
zfliu@pku.edu.cn (Z.L.)
Scan for full text
Muqiang Jian, Yingying Zhang, Zhongfan Liu. Natural Biopolymers for Flexible Sensing and Energy Devices[J]. Chinese Journal of Polymer Science, 2020,38(5):459-490.
Muqiang Jian, Yingying Zhang, Zhongfan Liu. Natural Biopolymers for Flexible Sensing and Energy Devices[J]. Chinese Journal of Polymer Science, 2020,38(5):459-490.
Muqiang Jian, Yingying Zhang, Zhongfan Liu. Natural Biopolymers for Flexible Sensing and Energy Devices[J]. Chinese Journal of Polymer Science, 2020,38(5):459-490. DOI: 10.1007/s10118-020-2379-9.
Muqiang Jian, Yingying Zhang, Zhongfan Liu. Natural Biopolymers for Flexible Sensing and Energy Devices[J]. Chinese Journal of Polymer Science, 2020,38(5):459-490. DOI: 10.1007/s10118-020-2379-9.
Natural biopolymers feature natural abundance, diverse chemical compositions, tunable properties, easy processability, excellent biocompatibility and biodegradability, as well as nontoxicity, providing new opportunities for the development of flexible sensing and energy devices. Generally, biopolymers are utilized as the passive and active building blocks to endow the flexible devices with mechanical robustness and good biocompatibility. This review aims to provide a comprehensive review on natural biopolymer-based sensing and energy devices. The diverse structures and fabrication processes of three typical biopolymers, including silk, cellulose, and chitin/chitosan, are presented. We review their utilities as the supporting substrates/matrix, active middle layers, separators, electrolytes, and active components of flexible sensing devices (sensors, actuators, transistors) and energy devices (batteries, supercapacitors, triboelectric nanogenerators). Finally, the remaining challenges and future research opportunities are discussed.
BiopolymersSilkCelluloseElectronicsEnergy devices
Fukagawa, H.; Sasaki, T.; Tsuzuki, T.; Nakajima, Y.; Takei, T.; Motomura, G.; Hasegawa, M.; Morii, K.; Shimizu, T. . Long-lived flexible displays employing efficient and stable inverted organic light-emitting diodes . Adv. Mater. , 2018 . 30 1706768 DOI:10.1002/adma.201706768http://doi.org/10.1002/adma.201706768 .
Khan, Y.; Ostfeld, A. E.; Lochner, C. M.; Pierre, A.; Arias, A. C. . Monitoring of vital signs with flexible and wearable medical devices . Adv. Mater. , 2016 . 28 4373 -4395 . DOI:10.1002/adma.201504366http://doi.org/10.1002/adma.201504366 .
Shi, J.; Liu, S.; Zhang, L.; Yang, B.; Shu, L.; Yang, Y.; Ren, M.; Wang, Y.; Chen, J.; Chen, W.; Chai, Y.; Tao, X. . Smart textile-integrated microelectronic systems for wearable applications . Adv. Mater. , 2019 . 31 1901958 DOI:10.1002/adma.201901958http://doi.org/10.1002/adma.201901958 .
Wang, C.; Xia, K.; Wang, H.; Liang, X.; Yin, Z.; Zhang, Y. . Advanced carbon for flexible and wearable electronics . Adv. Mater. , 2019 . 31 1801072 DOI:10.1002/adma.201801072http://doi.org/10.1002/adma.201801072 .
Baik, S.; Lee, H. J.; Kim, D. W.; Kim, J. W.; Lee, Y.; Pang, C. . Bioinspired adhesive architectures: from skin patch to integrated bioelectronics . Adv. Mater. , 2019 . 31 1803309 DOI:10.1002/adma.201803309http://doi.org/10.1002/adma.201803309 .
Jung, Y. H.; Park, B.; Kim, J. U.; Kim, T. I. . Bioinspired electronics for artificial sensory systems . Adv. Mater. , 2019 . 31 1803637 DOI:10.1002/adma.201803637http://doi.org/10.1002/adma.201803637 .
Hong, Y. J.; Jeong, H.; Cho, K. W.; Lu, N.; Kim, D. H. . Wearable and implantable devices for cardiovascular healthcare: from monitoring to therapy based on flexible and stretchable electronics . Adv. Funct. Mater. , 2019 . 29 1808247 DOI:10.1002/adfm.201808247http://doi.org/10.1002/adfm.201808247 .
Xu, S.; Jayaraman, A.; Rogers, J. A. . Skin sensors are the future of health care . Nature , 2019 . 571 319 -321 . DOI:10.1038/d41586-019-02143-0http://doi.org/10.1038/d41586-019-02143-0 .
Jian, M.; Wang, C.; Wang, Q.; Wang, H.; Xia, K.; Yin, Z.; Zhang, M.; Liang, X.; Zhang, Y. . Advanced carbon materials for flexible and wearable sensors . Sci. China Mater. , 2017 . 60 1026 -1062 . DOI:10.1007/s40843-017-9077-xhttp://doi.org/10.1007/s40843-017-9077-x .
Ren, H.; Zheng, L.; Wang, G.; Gao, X.; Tan, Z.; Shan, J.; Cui, L.; Li, K.; Jian, M.; Zhu, L.; Zhang, Y.; Peng, H.; Wei, D.; Liu, Z. . Transfer-medium-free nanofiber-reinforced graphene film and applications in wearable transparent pressure sensors . ACS Nano , 2019 . 13 5541 -5548 . DOI:10.1021/acsnano.9b00395http://doi.org/10.1021/acsnano.9b00395 .
Jang, H.; Park, Y. J.; Chen, X.; Das, T.; Kim, M. S.; Ahn, J. H. . Graphene-based flexible and stretchable electronics . Adv. Mater. , 2016 . 28 4184 -4202 . DOI:10.1002/adma.201504245http://doi.org/10.1002/adma.201504245 .
Segev-Bar, M.; Haick, H. . Flexible sensors based on nanoparticles . ACS Nano , 2013 . 7 8366 -8378 . DOI:10.1021/nn402728ghttp://doi.org/10.1021/nn402728g .
Liu, Z.; Xu, J.; Chen, D.; Shen, G. . Flexible electronics based on inorganic nanowires . Chem. Soc. Rev. , 2015 . 44 161 -192 . DOI:10.1039/C4CS00116Hhttp://doi.org/10.1039/C4CS00116H .
Yu, X.; Marks, T. J.; Facchetti, A. . Metal oxides for optoelectronic applications . Nat. Mater. , 2016 . 15 383 -396 . DOI:10.1038/nmat4599http://doi.org/10.1038/nmat4599 .
Root, S. E.; Savagatrup, S.; Printz, A. D.; Rodriquez, D.; Lipomi, D. J. . Mechanical properties of organic semiconductors for stretchable, highly flexible, and mechanically robust electronics . Chem. Rev. , 2017 . 117 6467 -6499 . DOI:10.1021/acs.chemrev.7b00003http://doi.org/10.1021/acs.chemrev.7b00003 .
Liu, H.; Li, Q.; Zhang, S.; Yin, R.; Liu, X.; He, Y.; Dai, K.; Shan, C.; Guo, J.; Liu, C.; Shen, C.; Wang, X.; Wang, N.; Wang, Z.; Wei, R.; Guo, Z. . Electrically conductive polymer composites for smart flexible strain sensors: a critical review . J. Mater. Chem. C , 2018 . 6 12121 -12141 . DOI:10.1039/C8TC04079Fhttp://doi.org/10.1039/C8TC04079F .
Liu, W.; Song, M. S.; Kong, B.; Cui, Y. . Flexible and stretchable energy storage: recent advances and future perspectives . Adv. Mater. , 2017 . 29 1603436 DOI:10.1002/adma.201603436http://doi.org/10.1002/adma.201603436 .
Cheng, X.; Pan, J.; Zhao, Y.; Liao, M.; Peng, H. . Gel polymer electrolytes for electrochemical energy storage . Adv. Energy Mater. , 2018 . 8 1702184 DOI:10.1002/aenm.201702184http://doi.org/10.1002/aenm.201702184 .
Shi, Y.; Peng, L.; Ding, Y.; Zhao, Y.; Yu, G. . Nanostructured conductive polymers for advanced energy storage . Chem. Soc. Rev. , 2015 . 44 6684 -6696 . DOI:10.1039/C5CS00362Hhttp://doi.org/10.1039/C5CS00362H .
Chandrashekar, B. N.; Deng, B.; Smitha, A. S.; Chen, Y.; Tan, C.; Zhang, H.; Peng, H.; Liu, Z. . Roll-to-roll green transfer of CVD graphene onto plastic for a transparent and flexible triboelectric nanogenerator . Adv. Mater. , 2015 . 27 5210 -5216 . DOI:10.1002/adma.201502560http://doi.org/10.1002/adma.201502560 .
Wen, L.; Li, F.; Cheng, H. M. . Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices . Adv. Mater. , 2016 . 28 4306 -4337 . DOI:10.1002/adma.201504225http://doi.org/10.1002/adma.201504225 .
Wu, Z.; Wang, Y.; Liu, X.; Lv, C.; Li, Y.; Wei, D.; Liu, Z. . Carbon-nanomaterial-based flexible batteries for wearable electronics . Adv. Mater. , 2019 . 31 1800716 DOI:10.1002/adma.201800716http://doi.org/10.1002/adma.201800716 .
Chen, K.; Shi, L.; Zhang, Y.; Liu, Z. . Scalable chemical-vapour-deposition growth of three-dimensional graphene materials towards energy-related applications . Chem. Soc. Rev. , 2018 . 47 3018 -3036 . DOI:10.1039/C7CS00852Jhttp://doi.org/10.1039/C7CS00852J .
Yu, L.; Yi, Y.; Yao, T.; Song, Y.; Chen, Y.; Li, Q.; Xia, Z.; Wei, N.; Tian, Z.; Nie, B.; Zhang, L.; Liu, Z.; Sun, J. . All VN-graphene architecture derived self-powered wearable sensors for ultrasensitive health monitoring . Nano Res. , 2018 . 12 331 -338. .
Guan, C.; Zhao, W.; Hu, Y.; Ke, Q.; Li, X.; Zhang, H.; Wang, J. . High-performance flexible solid-state Ni/Fe battery consisting of metal oxides coated carbon cloth/carbon nanofiber electrodes . Adv. Energy Mater. , 2016 . 6 1601034 DOI:10.1002/aenm.201601034http://doi.org/10.1002/aenm.201601034 .
Pang, J.; Bachmatiuk, A.; Yin, Y.; Trzebicka, B.; Zhao, L.; Fu, L.; Mendes, R. G.; Gemming, T.; Liu, Z.; Rummeli, M. H. . Applications of phosphorene and black phosphorus in energy conversion and storage devices . Adv. Energy Mater. , 2018 . 8 1702093 DOI:10.1002/aenm.201702093http://doi.org/10.1002/aenm.201702093 .
Pang, J.; Mendes, R. G.; Bachmatiuk, A.; Zhao, L.; Ta, H. Q.; Gemming, T.; Liu, H.; Liu, Z.; Rummeli, M. H. . Applications of 2D Mxenes in energy conversion and storage systems . Chem. Soc. Rev. , 2019 . 48 72 -133 . DOI:10.1039/C8CS00324Fhttp://doi.org/10.1039/C8CS00324F .
Yi, F.; Ren, H.; Shan, J.; Sun, X.; Wei, D.; Liu, Z. . Wearable energy sources based on 2D materials . Chem. Soc. Rev. , 2018 . 47 3152 -3188 . DOI:10.1039/C7CS00849Jhttp://doi.org/10.1039/C7CS00849J .
Yang, Q.; Wang, Y.; Li, X.; Li, H.; Wang, Z.; Tang, Z.; Ma, L.; Mo, F.; Zhi, C. . Recent progress of Mxene-based nanomaterials in flexible energy storage and electronic devices . Energy Environ. Mater. , 2018 . 1 183 -195 . DOI:10.1002/eem2.12023http://doi.org/10.1002/eem2.12023 .
Li, Y. C. E. . Sustainable biomass materials for biomedical applications . ACS Biomater. Sci. Eng. , 2019 . 5 2079 -2092 . DOI:10.1021/acsbiomaterials.8b01634http://doi.org/10.1021/acsbiomaterials.8b01634 .
Wang, L.; Chen, D.; Jiang, K.; Shen, G. . New insights and perspectives into biological materials for flexible electronics . Chem. Soc. Rev. , 2017 . 46 6764 -6815 . DOI:10.1039/C7CS00278Ehttp://doi.org/10.1039/C7CS00278E .
Zhao, S.; Malfait, W. J.; Guerrero-Alburquerque, N.; Koebel, M. M.; Nystrom, G. . Biopolymer aerogels and foams: chemistry, properties, and applications . Angew. Chem. Int. Ed. , 2018 . 57 7580 -7608 . DOI:10.1002/anie.201709014http://doi.org/10.1002/anie.201709014 .
Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. . Cellulose nanomaterials review: structure, properties and nanocomposites . Chem. Soc. Rev. , 2011 . 40 3941 -3994 . DOI:10.1039/c0cs00108bhttp://doi.org/10.1039/c0cs00108b .
Rockwood, D. N.; Preda, R. C.; Yucel, T.; Wang, X.; Lovett, M. L.; Kaplan, D. L. . Materials fabrication from Bombyx mori silk fibroin . Nat. Protoc. , 2011 . 6 1612 -1631 . DOI:10.1038/nprot.2011.379http://doi.org/10.1038/nprot.2011.379 .
Ling, S.; Chen, W.; Fan, Y.; Zheng, K.; Jin, K.; Yu, H.; Buehler, M. J.; Kaplan, D. L. . Biopolymer nanofibrils: structure, modeling, preparation, and applications . Prog. Polym. Sci. , 2018 . 85 1 -56 . DOI:10.1016/j.progpolymsci.2018.06.004http://doi.org/10.1016/j.progpolymsci.2018.06.004 .
Talebian, S.; Foroughi, J.; Wade, S. J.; Vine, K. L.; Dolatshahi-Pirouz, A.; Mehrali, M.; Conde, J.; Wallace, G. G. . Biopolymers for antitumor implantable drug delivery systems: recent advances and future outlook . Adv. Mater. , 2018 . 30 1706665 DOI:10.1002/adma.201706665http://doi.org/10.1002/adma.201706665 .
Park, S. B.; Lih, E.; Park, K. S.; Joung, Y. K.; Han, D. K. . Biopolymer-based functional composites for medical applications . Prog. Polym. Sci. , 2017 . 68 77 -105 . DOI:10.1016/j.progpolymsci.2016.12.003http://doi.org/10.1016/j.progpolymsci.2016.12.003 .
Zhu, B.; Wang, H.; Leow, W. R.; Cai, Y.; Loh, X. J.; Han, M. Y.; Chen, X. . Silk fibroin for flexible electronic devices . Adv. Mater. , 2016 . 28 4250 -4265 . DOI:10.1002/adma.201504276http://doi.org/10.1002/adma.201504276 .
Sun, Q.; Qian, B.; Uto, K.; Chen, J.; Liu, X.; Minari, T. . Functional biomaterials towards flexible electronics and sensors . Biosens. Bioelectron. , 2018 . 119 237 -251 . DOI:10.1016/j.bios.2018.08.018http://doi.org/10.1016/j.bios.2018.08.018 .
Suginta, W.; Khunkaewla, P.; Schulte, A. . Electrochemical biosensor applications of polysaccharides chitin and chitosan . Chem. Rev. , 2013 . 113 5458 -5479 . DOI:10.1021/cr300325rhttp://doi.org/10.1021/cr300325r .
Chen, C.; Hu, L. . Nanocellulose toward advanced energy storage devices: structure and electrochemistry . Acc. Chem. Res. , 2018 . 51 3154 -3165 . DOI:10.1021/acs.accounts.8b00391http://doi.org/10.1021/acs.accounts.8b00391 .
Zhu, H.; Luo, W.; Ciesielski, P. N.; Fang, Z.; Zhu, J. Y.; Henriksson, G.; Himmel, M. E.; Hu, L. . Wood-derived materials for green electronics, biological devices, and energy applications . Chem. Rev. , 2016 . 116 9305 -9374 . DOI:10.1021/acs.chemrev.6b00225http://doi.org/10.1021/acs.chemrev.6b00225 .
Azuma, K.; Izumi, R.; Osaki, T.; Ifuku, S.; Morimoto, M.; Saimoto, H.; Minami, S.; Okamoto, Y. . Chitin, chitosan, and its derivatives for wound healing: old and new materials . J. Funct. Biomater. , 2015 . 6 104 -142 . DOI:10.3390/jfb6010104http://doi.org/10.3390/jfb6010104 .
Yao, B.; Zhang, J.; Kou, T.; Song, Y.; Liu, T.; Li, Y. . Paper-based electrodes for flexible energy storage devices . Adv. Sci. , 2017 . 4 1700107 DOI:10.1002/advs.201700107http://doi.org/10.1002/advs.201700107 .
Gao, M.; Shih, C. C.; Pan, S. Y.; Chueh, C. C.; Chen, W. C. . Advances and challenges of green materials for electronics and energy storage applications: from design to end-of-life recovery . J. Mater. Chem. A , 2018 . 6 20546 -20563 . DOI:10.1039/C8TA07246Ahttp://doi.org/10.1039/C8TA07246A .
Omenetto, F. G.; Kaplan, D. L. . New opportunities for an ancient material . Science , 2010 . 329 528 -531 . DOI:10.1126/science.1188936http://doi.org/10.1126/science.1188936 .
Ling, S.; Kaplan, D. L.; Buehler, M. J. . Nanofibrils in nature and materials engineering . Nat. Rev. Mater. , 2018 . 3 18016 DOI:10.1038/natrevmats.2018.16http://doi.org/10.1038/natrevmats.2018.16 .
Niu, Q.; Peng, Q.; Lu, L.; Fan, S.; Shao, H.; Zhang, H.; Wu, R.; Hsiao, B. S.; Zhang, Y. . Single molecular layer of silk nanoribbon as potential basic building block of silk materials . ACS Nano , 2018 . 12 11860 -11870 . DOI:10.1021/acsnano.8b03943http://doi.org/10.1021/acsnano.8b03943 .
Keten, S.; Xu, Z.; Ihle, B.; Buehler, M. J. . Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk . Nat. Mater. , 2010 . 9 359 -367 . DOI:10.1038/nmat2704http://doi.org/10.1038/nmat2704 .
Koh, L. D.; Cheng, Y.; Teng, C. P.; Khin, Y. W.; Loh, X. J.; Tee, S. Y.; Low, M.; Ye, E.; Yu, H. D.; Zhang, Y. W.; Han, M. Y. . Structures, mechanical properties and applications of silk fibroin materials . Prog. Polym. Sci. , 2015 . 46 86 -110 . DOI:10.1016/j.progpolymsci.2015.02.001http://doi.org/10.1016/j.progpolymsci.2015.02.001 .
Tan, M. J.; Owh, C.; Chee, P. L.; Kyaw, A. K. K.; Kai, D.; Loh, X. J. . Biodegradable electronics: cornerstone for sustainable electronics and transient applications . J. Mater. Chem. C , 2016 . 4 5531 -5558 . DOI:10.1039/C6TC00678Ghttp://doi.org/10.1039/C6TC00678G .
Aigner, T. B.; DeSimone, E.; Scheibel, T. . Biomedical applications of recombinant silk-based materials . Adv. Mater. , 2018 . 30 1704636 DOI:10.1002/adma.201704636http://doi.org/10.1002/adma.201704636 .
Huang, W.; Ling, S.; Li, C.; Omenetto, F. G.; Kaplan, D. L. . Silkworm silk-based materials and devices generated using bio-nanotechnology . Chem. Soc. Rev. , 2018 . 47 6486 -6504 . DOI:10.1039/C8CS00187Ahttp://doi.org/10.1039/C8CS00187A .
Koeppel, A.; Holland, C. . Progress and trends in artificial silk spinning: a systematic review . ACS Biomater. Sci. Eng. , 2017 . 3 226 -237 . DOI:10.1021/acsbiomaterials.6b00669http://doi.org/10.1021/acsbiomaterials.6b00669 .
Wang, C.; Wu, S.; Jian, M.; Xie, J.; Xu, L.; Yang, X.; Zheng, Q.; Zhang, Y. . Silk nanofibers as high efficient and lightweight air filter . Nano Res. , 2016 . 9 2590 -2597 . DOI:10.1007/s12274-016-1145-3http://doi.org/10.1007/s12274-016-1145-3 .
Shang, L.; Yu, Y.; Liu, Y.; Chen, Z.; Kong, T.; Zhao, Y. . Spinning and applications of bioinspired fiber systems . ACS Nano , 2019 . 13 2749 -2772 . DOI:10.1021/acsnano.8b09651http://doi.org/10.1021/acsnano.8b09651 .
Liu, Y.; Ren, J.; Ling, S. . Bioinspired and biomimetic silk spinning . Compos. Commun. , 2019 . 13 85 -96 . DOI:10.1016/j.coco.2019.03.004http://doi.org/10.1016/j.coco.2019.03.004 .
Lammel, A. S.; Hu, X.; Park, S. H.; Kaplan, D. L.; Scheibel, T. R. . Controlling silk fibroin particle features for drug delivery . Biomaterials , 2010 . 31 4583 -4591 . DOI:10.1016/j.biomaterials.2010.02.024http://doi.org/10.1016/j.biomaterials.2010.02.024 .
Ling, S.; Li, C.; Adamcik, J.; Shao, Z.; Chen, X.; Mezzenga, R. . Modulating materials by orthogonally oriented β-strands: composites of amyloid and silk fibroin fibrils . Adv. Mater. , 2014 . 26 4569 -4574 . DOI:10.1002/adma.201400730http://doi.org/10.1002/adma.201400730 .
Ling, S.; Qin, Z.; Li, C.; Huang, W.; Kaplan, D. L.; Buehler, M. J. . Polymorphic regenerated silk fibers assembled through bioinspired spinning . Nat. Commun. , 2017 . 8 1387 DOI:10.1038/s41467-017-00613-5http://doi.org/10.1038/s41467-017-00613-5 .
Ling, S.; Jin, K.; Kaplan, D. L.; Buehler, M. J. . Ultrathin free-standing Bombyx mori silk nanofibril membranes . Nano Lett. , 2016 . 16 3795 -3800 . DOI:10.1021/acs.nanolett.6b01195http://doi.org/10.1021/acs.nanolett.6b01195 .
Partlow, B. P.; Hanna, C. W.; Rnjak-Kovacina, J.; Moreau, J. E.; Applegate, M. B.; Burke, K. A.; Marelli, B.; Mitropoulos, A. N.; Omenetto, F. G.; Kaplan, D. L. . Highly tunable elastomeric silk biomaterials . Adv. Funct. Mater. , 2014 . 24 4615 -4624 . DOI:10.1002/adfm.201400526http://doi.org/10.1002/adfm.201400526 .
Wang, Y.; Guo, J.; Zhou, L.; Ye, C.; Omenetto, F. G.; Kaplan, D. L.; Ling, S. . Design, fabrication, and function of silk-based nanomaterials . Adv. Funct. Mater. , 2018 . 28 1805305 DOI:10.1002/adfm.201805305http://doi.org/10.1002/adfm.201805305 .
Xu, S.; Song, J.; Morikawa, H.; Chen, Y.; Lin, H. . Fabrication of hierarchical structured Fe3O4 and Ag nanoparticles dual-coated silk fibers through electrostatic self-assembly . Mater. Lett. , 2016 . 164 274 -277 . DOI:10.1016/j.matlet.2015.08.051http://doi.org/10.1016/j.matlet.2015.08.051 .
Zhang, M.; Wang, C.; Wang, Q.; Jian, M.; Zhang, Y. . Sheath-core graphite/silk fiber made by dry-Meyer-rod-coating for wearable strain sensors . ACS Appl. Mater. Interfaces , 2016 . 8 20894 -20899 . DOI:10.1021/acsami.6b06984http://doi.org/10.1021/acsami.6b06984 .
Wu, R.; Ma, L.; Hou, C.; Meng, Z.; Guo, W.; Yu, W.; Yu, R.; Hu, F.; Liu, X. Y. . Silk composite electronic textile sensor for high space precision 2D combo temperature-pressure sensing . Small , 2019 . 15 1901558 DOI:10.1002/smll.201901558http://doi.org/10.1002/smll.201901558 .
Ryan, J. D.; Mengistie, D. A.; Gabrielsson, R.; Lund, A.; Muller, C. . Machine-washable PEDOT:PSS dyed silk yarns for electronic textiles . ACS Appl. Mater. Interfaces , 2017 . 9 9045 -9050 . DOI:10.1021/acsami.7b00530http://doi.org/10.1021/acsami.7b00530 .
Chen, J.; Venkatesan, H.; Hu, J. . Chemically modified silk proteins . Adv. Eng. Mater. , 2018 . 20 1700961 DOI:10.1002/adem.201700961http://doi.org/10.1002/adem.201700961 .
Tansil, N. C.; Li, Y.; Teng, C. P.; Zhang, S.; Win, K. Y.; Chen, X.; Liu, X. Y.; Han, M. Y. . Intrinsically colored and luminescent silk . Adv. Mater. , 2011 . 23 1463 -1466 . DOI:10.1002/adma.201003860http://doi.org/10.1002/adma.201003860 .
Cai, L.; Shao, H.; Hu, X.; Zhang, Y. . Reinforced and ultraviolet resistant silks from silkworms fed with titanium dioxide nanoparticles . ACS Sustain. Chem. Eng. , 2015 . 3 2551 -2557 . DOI:10.1021/acssuschemeng.5b00749http://doi.org/10.1021/acssuschemeng.5b00749 .
Yan, M.; Ma, X.; Yang, Y.; Wang, X.; Cheong, W. C.; Chen, Z.; Xu, X.; Huang, Y.; Wang, S.; Lian, C.; Li, Y. . Biofabrication strategy for functional fabrics . Nano Lett. , 2018 . 18 6017 -6021 . DOI:10.1021/acs.nanolett.8b02905http://doi.org/10.1021/acs.nanolett.8b02905 .
Wang, J. T.; Li, L. L.; Zhang, M. Y.; Liu, S. L.; Jiang, L. H.; Shen, Q. . Directly obtaining high strength silk fiber from silkworm by feeding carbon nanotubes . Mater. Sci. Eng. C Mater. Biol. Appl. , 2014 . 34 417 -421 . DOI:10.1016/j.msec.2013.09.041http://doi.org/10.1016/j.msec.2013.09.041 .
Wang, Q.; Wang, C.; Zhang, M.; Jian, M.; Zhang, Y. . Feeding single-walled carbon nanotubes or graphene to silkworms for reinforced silk fibers . Nano Lett. , 2016 . 16 6695 -6700 . DOI:10.1021/acs.nanolett.6b03597http://doi.org/10.1021/acs.nanolett.6b03597 .
Cho, S. Y.; Yun, Y. S.; Lee, S.; Jang, D.; Park, K. Y.; Kim, J. K.; Kim, B. H.; Kang, K.; Kaplan, D. L.; Jin, H. J. . Carbonization of a stable β-sheet-rich silk protein into a pseudographitic pyroprotein . Nat. Commun. , 2015 . 6 7145 DOI:10.1038/ncomms8145http://doi.org/10.1038/ncomms8145 .
Holland, C.; Numata, K.; Rnjak-Kovacina, J.; Seib, F. P. . The biomedical use of silk: past, present, future . Adv. Healthc. Mater. , 2019 . 8 1800465 DOI:10.1002/adhm.201800465http://doi.org/10.1002/adhm.201800465 .
Fan, S.; Zhang, Y.; Huang, X.; Geng, L.; Shao, H.; Hu, X.; Zhang, Y. . Silk materials for medical, electronic and optical applications . Sci. China Technol. Sci. , 2019 . 62 903 -918 . DOI:10.1007/s11431-018-9403-8http://doi.org/10.1007/s11431-018-9403-8 .
Suhas; Gupta, V. K.; Carrott, P. J.; Singh, R.; Chaudhary, M.; Kushwaha, S. . Cellulose: a review as natural, modified and activated carbon adsorbent . Bioresour. Technol. , 2016 . 216 1066 -1076 . DOI:10.1016/j.biortech.2016.05.106http://doi.org/10.1016/j.biortech.2016.05.106 .
Zhu, H.; Jia, Z.; Chen, Y.; Weadock, N.; Wan, J.; Vaaland, O.; Han, X.; Li, T.; Hu, L. . Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir . Nano Lett. , 2013 . 13 3093 -3100 . DOI:10.1021/nl400998thttp://doi.org/10.1021/nl400998t .
Klemm, D.; Kramer, F.; Moritz, S.; Lindstrom, T.; Ankerfors, M.; Gray, D.; Dorris, A. . Nanocelluloses: a new family of nature-based materials . Angew. Chem. Int. Ed. , 2011 . 50 5438 -5466 . DOI:10.1002/anie.201001273http://doi.org/10.1002/anie.201001273 .
Jing, Y.; Guo, Y.; Xia, Q.; Liu, X.; Wang, Y. . Catalytic production of value-added chemicals and liquid fuels from lignocellulosic biomass . Chem , 2019 . 5 2520 -2546 . DOI:10.1016/j.chempr.2019.05.022http://doi.org/10.1016/j.chempr.2019.05.022 .
Kaushik, M.; Moores, A. . Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis . Green Chem. , 2016 . 18 622 -637 . DOI:10.1039/C5GC02500Ahttp://doi.org/10.1039/C5GC02500A .
Abraham, E.; Kam, D.; Nevo, Y.; Slattegard, R.; Rivkin, A.; Lapidot, S.; Shoseyov, O. . Highly modified cellulose nanocrystals and formation of epoxy-nanocrystalline cellulose (CNC) nanocomposites . ACS Appl. Mater. Interfaces , 2016 . 8 28086 -28095 . DOI:10.1021/acsami.6b09852http://doi.org/10.1021/acsami.6b09852 .
Foster, E. J.; Moon, R. J.; Agarwal, U. P.; Bortner, M. J.; Bras, J.; Camarero-Espinosa, S.; Chan, K. J.; Clift, M. J. D.; Cranston, E. D.; Eichhorn, S. J.; Fox, D. M.; Hamad, W. Y.; Heux, L.; Jean, B.; Korey, M.; Nieh, W.; Ong, K. J.; Reid, M. S.; Renneckar, S.; Roberts, R.; Shatkin, J. A.; Simonsen, J.; Stinson-Bagby, K.; Wanasekara, N.; Youngblood, J. . Current characterization methods for cellulose nanomaterials . Chem. Soc. Rev. , 2018 . 47 2609 -2679 . DOI:10.1039/C6CS00895Jhttp://doi.org/10.1039/C6CS00895J .
Chen, W.; Li, Q.; Wang, Y.; Yi, X.; Zeng, J.; Yu, H.; Liu, Y.; Li, J. . Comparative study of aerogels obtained from differently prepared nanocellulose fibers . ChemSusChem , 2014 . 7 154 -161 . DOI:10.1002/cssc.201300950http://doi.org/10.1002/cssc.201300950 .
Nogi, M.; Iwamoto, S.; Nakagaito, A. N.; Yano, H. . Optically transparent nanofiber paper . Adv. Mater. , 2009 . 21 1595 -1598 . DOI:10.1002/adma.200803174http://doi.org/10.1002/adma.200803174 .
Yang, X.; Cranston, E. D. . Chemically cross-linked cellulose nanocrystal aerogels with shape recovery and superabsorbent properties . Chem. Mater. , 2014 . 26 6016 -6025 . DOI:10.1021/cm502873chttp://doi.org/10.1021/cm502873c .
Jiang, F.; Li, T.; Li, Y.; Zhang, Y.; Gong, A.; Dai, J.; Hitz, E.; Luo, W.; Hu, L. . Wood-based nanotechnologies toward sustainability . Adv. Mater. , 2018 . 30 1703453 DOI:10.1002/adma.201703453http://doi.org/10.1002/adma.201703453 .
Kontturi, E.; Laaksonen, P.; Linder, M. B.; Nonappa; Groschel A. H.; Rojas, O. J.; Ikkala, O. . Advanced materials through assembly of nanocelluloses . Adv. Mater. , 2018 . 30 1703779 DOI:10.1002/adma.201703779http://doi.org/10.1002/adma.201703779 .
Wang, S.; Lu, A.; Zhang, L. . Recent advances in regenerated cellulose materials . Prog. Polym. Sci. , 2016 . 53 169 -206 . DOI:10.1016/j.progpolymsci.2015.07.003http://doi.org/10.1016/j.progpolymsci.2015.07.003 .
Nechyporchuk, O.; Yu, J.; Nierstrasz, V. A.; Bordes, R. . Cellulose nanofibril-based coatings of woven cotton fabrics for improved inkjet printing with a potential in e-textile manufacturing . ACS Sustain. Chem. Eng. , 2017 . 5 4793 -4801 . DOI:10.1021/acssuschemeng.7b00200http://doi.org/10.1021/acssuschemeng.7b00200 .
Zheng, Q.; Cai, Z.; Ma, Z.; Gong, S. . Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors . ACS Appl. Mater. Interfaces , 2015 . 7 3263 -3271 . DOI:10.1021/am507999shttp://doi.org/10.1021/am507999s .
Wang, Z.; Carlsson, D. O.; Tammela, P.; Hua, K.; Zhang, P.; Nyholm, L.; Stromme, M. . Surface modified nanocellulose fibers yield conducting polymer-based flexible supercapacitors with enhanced capacitances . ACS Nano , 2015 . 9 7563 -7571 . DOI:10.1021/acsnano.5b02846http://doi.org/10.1021/acsnano.5b02846 .
Dutta, S.; Kim, J.; Ide, Y.; Ho, Kim J.; Hossain, M. S. A.; Bando, Y.; Yamauchi, Y.; Wu, K. C. W. . 3D network of cellulose-based energy storage devices and related emerging applications . Mater. Horiz. , 2017 . 4 522 -545 . DOI:10.1039/C6MH00500Dhttp://doi.org/10.1039/C6MH00500D .
Zhang, T.; Yang, L.; Yan, X.; Ding, X. . Recent advances of cellulose-based materials and their promising application in sodium-ion batteries and capacitors . Small , 2018 . 14 1802444 DOI:10.1002/smll.201802444http://doi.org/10.1002/smll.201802444 .
Zargar, V.; Asghari, M.; Dashti, A. . A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications . ChemBioEng Rev. , 2015 . 2 204 -226 . DOI:10.1002/cben.201400025http://doi.org/10.1002/cben.201400025 .
Shamshina, J. L.; Berton, P.; Rogers, R. D. . Advances in functional chitin materials: a review . ACS Sustain. Chem. Eng. , 2019 . 7 6444 -6457 . DOI:10.1021/acssuschemeng.8b06372http://doi.org/10.1021/acssuschemeng.8b06372 .
Raabe, D.; Al-Sawalmih, A.; Yi, S. B.; Fabritius, H. . Preferred crystallographic texture of α-chitin as a microscopic and macroscopic design principle of the exoskeleton of the lobster Homarus americanus . Acta Biomater. , 2007 . 3 882 -895 . DOI:10.1016/j.actbio.2007.04.006http://doi.org/10.1016/j.actbio.2007.04.006 .
Shamshina, J. L.; Barber, P. S.; Gurau, G.; Griggs, C. S.; Rogers, R. D. . Pulping of crustacean waste using ionic liquids: to extract or not to extract . ACS Sustain. Chem. Eng. , 2016 . 4 6072 -6081 . DOI:10.1021/acssuschemeng.6b01434http://doi.org/10.1021/acssuschemeng.6b01434 .
Pillai, C. K. S.; Paul, W.; Sharma, C. P. . Chitin and chitosan polymers: chemistry, solubility and fiber formation . Prog. Polym. Sci. , 2009 . 34 641 -678 . DOI:10.1016/j.progpolymsci.2009.04.001http://doi.org/10.1016/j.progpolymsci.2009.04.001 .
Shukla, S. K.; Mishra, A. K.; Arotiba, O. A.; Mamba, B. B. . Chitosan-based nanomaterials: a state-of-the-art review . Int. J. Biol. Macromol. , 2013 . 59 46 -58 . DOI:10.1016/j.ijbiomac.2013.04.043http://doi.org/10.1016/j.ijbiomac.2013.04.043 .
Yeul, V. S.; Rayalu, S. S. . Unprecedented chitin and chitosan: a chemical overview . J. Polym. Environ. , 2012 . 21 606 -614. .
Zhang, X.; Rolandi, M. . Engineering strategies for chitin nanofibers . J. Mater. Chem. B , 2017 . 5 2547 -2559 . DOI:10.1039/C6TB03324Ehttp://doi.org/10.1039/C6TB03324E .
Rinaudo, M. . Chitin and chitosan: properties and applications . Prog. Polym. Sci. , 2006 . 31 603 -632 . DOI:10.1016/j.progpolymsci.2006.06.001http://doi.org/10.1016/j.progpolymsci.2006.06.001 .
Ifuku, S.; Nogi, M.; Abe, K.; Yoshioka, M.; Morimoto, M.; Saimoto, H.; Yano, H. . Preparation of chitin nanofibers with a uniform width as α-chitin from crab shells . Biomacromolecules , 2009 . 10 1584 -1588 . DOI:10.1021/bm900163dhttp://doi.org/10.1021/bm900163d .
Ifuku, S.; Saimoto, H. . Chitin nanofibers: preparations, modifications, and applications . Nanoscale , 2012 . 4 3308 -3318 . DOI:10.1039/c2nr30383chttp://doi.org/10.1039/c2nr30383c .
Kaya, M.; Akyuz, B.; Bulut, E.; Sargin, I.; Eroglu, F.; Tan, G. . Chitosan nanofiber production from drosophila by electrospinning . Int. J. Biol. Macromol. , 2016 . 92 49 -55 . DOI:10.1016/j.ijbiomac.2016.07.021http://doi.org/10.1016/j.ijbiomac.2016.07.021 .
Kim, K.; Ha, M.; Choi, B.; Joo, S. H.; Kang, H. S.; Park, J. H.; Gu, B.; Park, C.; Park, C.; Kim, J.; Kwak, S. K.; Ko, H.; Jin, J.; Kang, S. J. . Biodegradable, electro-active chitin nanofiber films for flexible piezoelectric transducers . Nano Energy , 2018 . 48 275 -283 . DOI:10.1016/j.nanoen.2018.03.056http://doi.org/10.1016/j.nanoen.2018.03.056 .
Xu, D.; Huang, J.; Zhao, D.; Ding, B.; Zhang, L.; Cai, J. . High-flexibility, high-toughness double-cross-linked chitin hydrogels by sequential chemical and physical cross-linkings . Adv. Mater. , 2016 . 28 5844 -5849 . DOI:10.1002/adma.201600448http://doi.org/10.1002/adma.201600448 .
Wang, L.; Wang, K.; Lou, Z.; Jiang, K.; Shen, G. . Plant-based modular building blocks for “green” electronic skins . Adv. Funct. Mater. , 2018 . 28 1804510 DOI:10.1002/adfm.201804510http://doi.org/10.1002/adfm.201804510 .
Irimia-Vladu, M. . "Green" electronics: biodegradable and biocompatible materials and devices for sustainable future . Chem. Soc. Rev. , 2014 . 43 588 -610 . DOI:10.1039/C3CS60235Dhttp://doi.org/10.1039/C3CS60235D .
Wu, X.; Zhou, J.; Huang, J. . Integration of biomaterials into sensors based on organic thin-film transistors . Macromol. Rapid Commun. , 2018 . 39 1800084 DOI:10.1002/marc.201800084http://doi.org/10.1002/marc.201800084 .
Su, B.; Gong, S.; Ma, Z.; Yap, L. W.; Cheng, W. . Mimosa-inspired design of a flexible pressure sensor with touch sensitivity . Small , 2015 . 11 1886 -1891 . DOI:10.1002/smll.201403036http://doi.org/10.1002/smll.201403036 .
Jian, M.; Xia, K.; Wang, Q.; Yin, Z.; Wang, H.; Wang, C.; Xie, H.; Zhang, M.; Zhang, Y. . Flexible and highly sensitive pressure sensors based on bionic hierarchical structures . Adv. Funct. Mater. , 2017 . 27 1606066 DOI:10.1002/adfm.201606066http://doi.org/10.1002/adfm.201606066 .
Xia, K.; Wang, C.; Jian, M.; Wang, Q.; Zhang, Y. . CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor . Nano Res. , 2017 . 11 1124 -1134. .
Nie, P.; Wang, R.; Xu, X.; Cheng, Y.; Wang, X.; Shi, L.; Sun, J. . High-performance piezoresistive electronic skin with bionic hierarchical microstructure and microcracks . ACS Appl. Mater. Interfaces , 2017 . 9 14911 -14919 . DOI:10.1021/acsami.7b01979http://doi.org/10.1021/acsami.7b01979 .
Wei, Y.; Chen, S.; Lin, Y.; Yang, Z.; Liu, L. . Cu-Ag core-shell nanowires for electronic skin with a petal molded microstructure . J. Mater. Chem. C , 2015 . 3 9594 -9602 . DOI:10.1039/C5TC01723Hhttp://doi.org/10.1039/C5TC01723H .
Li, T.; Luo, H.; Qin, L.; Wang, X.; Xiong, Z.; Ding, H.; Gu, Y.; Liu, Z.; Zhang, T. . Flexible capacitive tactile sensor based on micropatterned dielectric layer . Small , 2016 . 12 5042 -5048 . DOI:10.1002/smll.201600760http://doi.org/10.1002/smll.201600760 .
Wang, X.; Gu, Y.; Xiong, Z.; Cui, Z.; Zhang, T. . Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals . Adv. Mater. , 2014 . 26 1336 -1342 . DOI:10.1002/adma.201304248http://doi.org/10.1002/adma.201304248 .
Afroj, S.; Karim, N.; Wang, Z.; Tan, S.; He, P.; Holwill, M.; Ghazaryan, D.; Fernando, A.; Novoselov, K. S. . Engineering graphene flakes for wearable textile sensors via highly scalable and ultrafast yarn dyeing technique . ACS Nano , 2019 . 13 3847 -3857 . DOI:10.1021/acsnano.9b00319http://doi.org/10.1021/acsnano.9b00319 .
Tao, L. Q.; Zhang, K. N.; Tian, H.; Liu, Y.; Wang, D. Y.; Chen, Y. Q.; Yang, Y.; Ren, T. L. . Graphene-paper pressure sensor for detecting human motions . ACS Nano , 2017 . 11 8790 -8795 . DOI:10.1021/acsnano.7b02826http://doi.org/10.1021/acsnano.7b02826 .
Liu, Z. L.; Li, Z.; Cheng, L.; Chen, S. H.; Wu, D. Y.; Dai, F. Y. . Reduced graphene oxide coated silk fabrics with conductive property for wearable electronic textiles application . Adv. Electron. Mater. , 2019 . 5 1800648 DOI:10.1002/aelm.201800648http://doi.org/10.1002/aelm.201800648 .
Souri, H.; Bhattacharyya, D. . Highly sensitive, stretchable and wearable strain sensors using fragmented conductive cotton fabric . J. Mater. Chem. C , 2018 . 6 10524 -10531 . DOI:10.1039/C8TC03702Ghttp://doi.org/10.1039/C8TC03702G .
Hamedi, M. M.; Ainla, A.; Guder, F.; Christodouleas, D. C.; Fernandez-Abedul, M. T.; Whitesides, G. M. . Integrating electronics and microfluidics on paper . Adv. Mater. , 2016 . 28 5054 -5063 . DOI:10.1002/adma.201505823http://doi.org/10.1002/adma.201505823 .
Pyo, S.; Lee, J.; Kim, W.; Jo, E.; Kim, J. . Multi-layered, hierarchical fabric-based tactile sensors with high sensitivity and linearity in ultrawide pressure range . Adv. Funct. Mater. , 2019 . 29 1902484 DOI:10.1002/adfm.201902484http://doi.org/10.1002/adfm.201902484 .
Lima, R.; Alcaraz-Espinoza, J. J.; da Silva, F. A. G., Jr.; de Oliveira, H. P. . Multifunctional wearable electronic textiles using cotton fibers with polypyrrole and carbon nanotubes . ACS Appl. Mater. Interfaces , 2018 . 10 13783 -13795 . DOI:10.1021/acsami.8b04695http://doi.org/10.1021/acsami.8b04695 .
Lund, A.; Darabi, S.; Hultmark, S.; Ryan, J. D.; Andersson, B.; Ström, A.; Müller, C. . Roll-to-roll dyed conducting silk yarns: a versatile material for e-textile devices . Adv. Mater. Technol. , 2018 . 3 1800251 DOI:10.1002/admt.201800251http://doi.org/10.1002/admt.201800251 .
Li, B.; Xiao, G.; Liu, F.; Qiao, Y.; Li, C. M.; Lu, Z. . A flexible humidity sensor based on silk fabrics for human respiration monitoring . J. Mater. Chem. C , 2018 . 6 4549 -4554 . DOI:10.1039/C8TC00238Jhttp://doi.org/10.1039/C8TC00238J .
Liu, M.; Pu, X.; Jiang, C.; Liu, T.; Huang, X.; Chen, L.; Du, C.; Sun, J.; Hu, W.; Wang, Z. L. . Large-area all-textile pressure sensors for monitoring human motion and physiological signals . Adv. Mater. , 2017 . 29 1703700 DOI:10.1002/adma.201703700http://doi.org/10.1002/adma.201703700 .
Guder, F.; Ainla, A.; Redston, J.; Mosadegh, B.; Glavan, A.; Martin, T. J.; Whitesides, G. M. . Paper-based electrical respiration sensor . Angew. Chem. Int. Ed. , 2016 . 55 5727 -5732 . DOI:10.1002/anie.201511805http://doi.org/10.1002/anie.201511805 .
Liao, X.; Zhang, Z.; Liao, Q.; Liang, Q.; Ou, Y.; Xu, M.; Li, M.; Zhang, G.; Zhang, Y. . Flexible and printable paper-based strain sensors for wearable and large-area green electronics . Nanoscale , 2016 . 8 13025 -13032 . DOI:10.1039/C6NR02172Ghttp://doi.org/10.1039/C6NR02172G .
Liao, X.; Liao, Q.; Yan, X.; Liang, Q.; Si, H.; Li, M.; Wu, H.; Cao, S.; Zhang, Y. . Flexible and highly sensitive strain sensors fabricated by pencil drawn for wearable monitor . Adv. Funct. Mater. , 2015 . 25 2395 -2401 . DOI:10.1002/adfm.201500094http://doi.org/10.1002/adfm.201500094 .
Mahadeva, S. K.; Walus, K.; Stoeber, B. . Paper as a platform for sensing applications and other devices: a review . ACS Appl. Mater. Interfaces , 2015 . 7 8345 -8362 . DOI:10.1021/acsami.5b00373http://doi.org/10.1021/acsami.5b00373 .
Zhang, Y.; Zhang, L.; Cui, K.; Ge, S.; Cheng, X.; Yan, M.; Yu, J.; Liu, H. . Flexible electronics based on micro/nanostructured paper . Adv. Mater. , 2018 . 30 1801588 DOI:10.1002/adma.201801588http://doi.org/10.1002/adma.201801588 .
Asadpoordarvish, A.; Sandström, A.; Larsen, C.; Bollström, R.; Toivakka, M.; Österbacka, R.; Edman, L. . Light-emitting paper . Adv. Funct. Mater. , 2015 . 25 3238 -3245 . DOI:10.1002/adfm.201500528http://doi.org/10.1002/adfm.201500528 .
Xu, J.; Zhang, Y.; Li, L.; Kong, Q.; Zhang, L.; Ge, S.; Yu, J. . Colorimetric and electrochemiluminescence dual-mode sensing of lead ion based on integrated lab-on-paper device . ACS Appl. Mater. Interfaces , 2018 . 10 3431 -3440 . DOI:10.1021/acsami.7b18542http://doi.org/10.1021/acsami.7b18542 .
Yang, H.; Zhang, Y.; Li, L.; Zhang, L.; Lan, F.; Yu, J. . Sudoku-like lab-on-paper cyto-device with dual enhancement of electrochemiluminescence intermediates strategy . Anal. Chem. , 2017 . 89 7511 -7519 . DOI:10.1021/acs.analchem.7b01194http://doi.org/10.1021/acs.analchem.7b01194 .
Zhang, Y.; Ge, L.; Li, M.; Yan, M.; Ge, S.; Yu, J.; Song, X.; Cao, B. . Flexible paper-based ZnO nanorod light-emitting diodes induced multiplexed photoelectrochemical immunoassay . Chem. Commun. , 2014 . 50 1417 -1419 . DOI:10.1039/C3CC48421Ahttp://doi.org/10.1039/C3CC48421A .
Chen, G.; Matsuhisa, N.; Liu, Z.; Qi, D.; Cai, P.; Jiang, Y.; Wan, C.; Cui, Y.; Leow, W. R.; Liu, Z.; Gong, S.; Zhang, K. Q.; Cheng, Y.; Chen, X. . Plasticizing silk protein for on-skin stretchable electrodes . Adv. Mater. , 2018 . 30 1800129 DOI:10.1002/adma.201800129http://doi.org/10.1002/adma.201800129 .
Seo, J.-W.; Kim, H.; Kim, K.; Choi, S. Q.; Lee, H. J. . Calcium-modified silk as a biocompatible and strong adhesive for epidermal electronics . Adv. Funct. Mater. , 2018 . 28 1800802 DOI:10.1002/adfm.201800802http://doi.org/10.1002/adfm.201800802 .
Kim, D. H.; Viventi, J.; Amsden, J. J.; Xiao, J.; Vigeland, L.; Kim, Y. S.; Blanco, J. A.; Panilaitis, B.; Frechette, E. S.; Contreras, D.; Kaplan, D. L.; Omenetto, F. G.; Huang, Y.; Hwang, K. C.; Zakin, M. R.; Litt, B.; Rogers, J. A. . Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics . Nat. Mater. , 2010 . 9 511 -517 . DOI:10.1038/nmat2745http://doi.org/10.1038/nmat2745 .
Hwang, S. W.; Tao, H.; Kim, D. H.; Cheng, H.; Song, J. K.; Rill, E.; Brenckle, M. A.; Panilaitis, B.; Won, S. M.; Kim, Y. S. . A physically transient form of silicon electronics . Science , 2012 . 337 1640 -1644 . DOI:10.1126/science.1226325http://doi.org/10.1126/science.1226325 .
Mannoor, M. S.; Tao, H.; Clayton, J. D.; Sengupta, A.; Kaplan, D. L.; Naik, R. R.; Verma, N.; Omenetto, F. G.; McAlpine, M. C. . Graphene-based wireless bacteria detection on tooth enamel . Nat. Commun. , 2012 . 3 763 DOI:10.1038/ncomms1767http://doi.org/10.1038/ncomms1767 .
Jin, J.; Lee, D.; Im, H. G.; Han, Y. C.; Jeong, E. G.; Rolandi, M.; Choi, K. C.; Bae, B. S. . Chitin nanofiber transparent paper for flexible green electronics . Adv. Mater. , 2016 . 28 5169 -5175 . DOI:10.1002/adma.201600336http://doi.org/10.1002/adma.201600336 .
Hong, M. S.; Choi, G. M.; Kim, J.; Jang, J.; Choi, B.; Kim, J. K.; Jeong, S.; Leem, S.; Kwon, H. Y.; Hwang, H. B.; Im, H. G.; Park, J. U.; Bae, B. S.; Jin, J. . Biomimetic chitin-silk hybrids: an optically transparent structural platform for wearable devices and advanced electronics . Adv. Funct. Mater. , 2018 . 28 1705480 DOI:10.1002/adfm.201705480http://doi.org/10.1002/adfm.201705480 .
Fang, Z.; Zhu, H.; Bao, W.; Preston, C.; Liu, Z.; Dai, J.; Li, Y.; Hu, L. . Highly transparent paper with tunable haze for green electronics . Energy Environ. Sci. , 2014 . 7 3313 -3319 . DOI:10.1039/C4EE02236Jhttp://doi.org/10.1039/C4EE02236J .
Barhoum, A.; Samyn, P.; Ohlund, T.; Dufresne, A. . Review of recent research on flexible multifunctional nanopapers . Nanoscale , 2017 . 9 15181 -15205 . DOI:10.1039/C7NR04656Ahttp://doi.org/10.1039/C7NR04656A .
Jung, Y. H.; Chang, T. H.; Zhang, H.; Yao, C.; Zheng, Q.; Yang, V. W.; Mi, H.; Kim, M.; Cho, S. J.; Park, D. W.; Jiang, H.; Lee, J.; Qiu, Y.; Zhou, W.; Cai, Z.; Gong, S.; Ma, Z. . High-performance green flexible electronics based on biodegradable cellulose nanofibril paper . Nat. Commun. , 2015 . 6 7170 DOI:10.1038/ncomms8170http://doi.org/10.1038/ncomms8170 .
Fujisaki, Y.; Koga, H.; Nakajima, Y.; Nakata, M.; Tsuji, H.; Yamamoto, T.; Kurita, T.; Nogi, M.; Shimidzu, N. . Transparent nanopaper-based flexible organic thin-film transistor array . Adv. Funct. Mater. , 2014 . 24 1657 -1663 . DOI:10.1002/adfm.201303024http://doi.org/10.1002/adfm.201303024 .
Yin, Z.; Jian, M.; Wang, C.; Xia, K.; Liu, Z.; Wang, Q.; Zhang, M.; Wang, H.; Liang, X.; Liang, X.; Long, Y.; Yu, X.; Zhang, Y. . Splash-resistant and light-weight silk-sheathed wires for textile electronics . Nano Lett. , 2018 . 18 7085 -7091 . DOI:10.1021/acs.nanolett.8b03085http://doi.org/10.1021/acs.nanolett.8b03085 .
Zhang, C.; Fan, S.; Shao, H.; Hu, X.; Zhu, B.; Zhang, Y. . Graphene trapped silk scaffolds integrate high conductivity and stability . Carbon , 2019 . 148 16 -27 . DOI:10.1016/j.carbon.2019.03.042http://doi.org/10.1016/j.carbon.2019.03.042 .
Veres, J.; Ogier, S.; Lloyd, G.; de Leeuw, D. . Gate insulators in organic field-effect transistors . Chem. Mater. , 2004 . 16 4543 -4555 . DOI:10.1021/cm049598qhttp://doi.org/10.1021/cm049598q .
Wang, C. H.; Hsieh, C. Y.; Hwang, J. C. . Flexible organic thin-film transistors with silk fibroin as the gate dielectric . Adv. Mater. , 2011 . 23 1630 -1634 . DOI:10.1002/adma.201004071http://doi.org/10.1002/adma.201004071 .
Cunha, I.; Barras, R.; Grey, P.; Gaspar, D.; Fortunato, E.; Martins, R.; Pereira, L. . Reusable cellulose-based hydrogel sticker film applied as gate dielectric in paper electrolyte-gated transistors . Adv. Funct. Mater. , 2017 . 27 1606755 DOI:10.1002/adfm.201606755http://doi.org/10.1002/adfm.201606755 .
Liu, Y. H.; Zhu, L. Q.; Feng, P.; Shi, Y.; Wan, Q. . Freestanding artificial synapses based on laterally proton-coupled transistors on chitosan membranes . Adv. Mater. , 2015 . 27 5599 -5604 . DOI:10.1002/adma.201502719http://doi.org/10.1002/adma.201502719 .
Tan, C.; Liu, Z.; Huang, W.; Zhang, H. . Non-volatile resistive memory devices based on solution-processed ultrathin two-dimensional nanomaterials . Chem. Soc. Rev. , 2015 . 44 2615 -2628 . DOI:10.1039/C4CS00399Chttp://doi.org/10.1039/C4CS00399C .
Lin, W. P.; Liu, S. J.; Gong, T.; Zhao, Q.; Huang, W. . Polymer-based resistive memory materials and devices . Adv. Mater. , 2014 . 26 570 -606 . DOI:10.1002/adma.201302637http://doi.org/10.1002/adma.201302637 .
Wang, H.; Meng, F.; Zhu, B.; Leow, W. R.; Liu, Y.; Chen, X. . Resistive switching memory devices based on proteins . Adv. Mater. , 2015 . 27 7670 -7676 . DOI:10.1002/adma.201405728http://doi.org/10.1002/adma.201405728 .
Hota, M. K.; Bera, M. K.; Kundu, B.; Kundu, S. C.; Maiti, C. K. . A natural silk fibroin protein-based transparent bio-memristor . Adv. Funct. Mater. , 2012 . 22 4493 -4499 . DOI:10.1002/adfm.201200073http://doi.org/10.1002/adfm.201200073 .
Wang, H.; Du, Y.; Li, Y.; Zhu, B.; Leow, W. R.; Li, Y.; Pan, J.; Wu, T.; Chen, X. . Configurable resistive switching between memory and threshold characteristics for protein-based devices . Adv. Funct. Mater. , 2015 . 25 3825 -3831 . DOI:10.1002/adfm.201501389http://doi.org/10.1002/adfm.201501389 .
Wang, H.; Zhu, B.; Wang, H.; Ma, X.; Hao, Y.; Chen, X. . Ultra-lightweight resistive switching memory devices based on silk fibroin . Small , 2016 . 12 3360 -3365 . DOI:10.1002/smll.201600893http://doi.org/10.1002/smll.201600893 .
Hosseini, N. R.; Lee, J. S. . Biocompatible and flexible chitosan-based resistive switching memory with magnesium electrodes . Adv. Funct. Mater. , 2015 . 25 5586 -5592 . DOI:10.1002/adfm.201502592http://doi.org/10.1002/adfm.201502592 .
Chorsi, M. T.; Curry, E. J.; Chorsi, H. T.; Das, R.; Baroody, J.; Purohit, P. K.; Ilies, H.; Nguyen, T. D. . Piezoelectric biomaterials for sensors and actuators . Adv. Mater. , 2019 . 31 1802084 DOI:10.1002/adma.201802084http://doi.org/10.1002/adma.201802084 .
Jayathilaka, W.; Qi, K.; Qin, Y.; Chinnappan, A.; Serrano-Garcia, W.; Baskar, C.; Wang, H.; He, J.; Cui, S.; Thomas, S. W.; Ramakrishna, S. . Significance of nanomaterials in wearables: a review on wearable actuators and sensors . Adv. Mater. , 2019 . 31 1805921 DOI:10.1002/adma.201805921http://doi.org/10.1002/adma.201805921 .
Wang, B.; Facchetti, A. . Mechanically flexible conductors for stretchable and wearable e-skin and e-textile devices . Adv. Mater. , 2019 . 31 1901408 DOI:10.1002/adma.201901408http://doi.org/10.1002/adma.201901408 .
Yi, F.; Zhang, Z.; Kang, Z.; Liao, Q.; Zhang, Y. . Recent advances in triboelectric nanogenerator-based health monitoring . Adv. Funct. Mater. , 2019 . 29 1808849 DOI:10.1002/adfm.201808849http://doi.org/10.1002/adfm.201808849 .
Yu, G. H.; Han, Q.; Qu, L. T. . Graphene fibers: advancing applications in sensor, energy storage and conversion . Chinese J. Polym. Sci. , 2019 . 37 535 -547 . DOI:10.1007/s10118-019-2245-9http://doi.org/10.1007/s10118-019-2245-9 .
Jia, T.; Wang, Y.; Dou, Y.; Li, Y.; Jung de Andrade, M.; Wang, R.; Fang, S.; Li, J.; Yu, Z.; Qiao, R.; Liu, Z.; Cheng, Y.; Su, Y.; Minary Jolandan, M.; Baughman, R. H.; Qian, D.; Liu, Z. . Moisture sensitive smart yarns and textiles from self-balanced silk fiber muscles . Adv. Funct. Mater. , 2019 . 29 1808241 DOI:10.1002/adfm.201808241http://doi.org/10.1002/adfm.201808241 .
Kuang, Y.; Chen, C.; Cheng, J.; Pastel, G.; Li, T.; Song, J.; Jiang, F.; Li, Y.; Zhang, Y.; Jang, S. H.; Chen, G.; Li, T.; Hu, L. . Selectively aligned cellulose nanofibers towards high-performance soft actuators . Extreme Mech. Lett. , 2019 . 29 100463 DOI:10.1016/j.eml.2019.100463http://doi.org/10.1016/j.eml.2019.100463 .
Liu, D.; Tarakanova, A.; Hsu, C. C.; Yu, M.; Zheng, S.; Yu, L.; Liu, J.; He, Y.; Dunstan, D.; Buehler, M. J. . Spider dragline silk as torsional actuator driven by humidity . Sci. Adv. , 2019 . 5 eaau9183 DOI:10.1126/sciadv.aau9183http://doi.org/10.1126/sciadv.aau9183 .
Mirabedini, A.; Aziz, S.; Spinks, G. M.; Foroughi, J. . Wet-spun biofiber for torsional artificial muscles . Soft Robot. , 2017 . 4 421 -430 . DOI:10.1089/soro.2016.0057http://doi.org/10.1089/soro.2016.0057 .
Wang, Q.; Ling, S.; Liang, X.; Wang, H.; Lu, H.; Zhang, Y. . Self-healable multifunctional electronic tattoos based on silk and graphene . Adv. Funct. Mater. , 2019 . 29 1808695 DOI:10.1002/adfm.201808695http://doi.org/10.1002/adfm.201808695 .
Zhou, Y.; Wan, C.; Yang, Y.; Yang, H.; Wang, S.; Dai, Z.; Ji, K.; Jiang, H.; Chen, X.; Long, Y. . Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics . Adv. Funct. Mater. , 2019 . 29 1806220 DOI:10.1002/adfm.201806220http://doi.org/10.1002/adfm.201806220 .
Tong, R.; Chen, G.; Pan, D.; Qi, H.; Li, R.; Tian, J.; Lu, F.; He, M. . Highly stretchable and compressible cellulose ionic hydrogels for flexible strain sensors . Biomacromolecules , 2019 . 20 2096 -2104 . DOI:10.1021/acs.biomac.9b00322http://doi.org/10.1021/acs.biomac.9b00322 .
Shao, C.; Wang, M.; Meng, L.; Chang, H.; Wang, B.; Xu, F.; Yang, J.; Wan, P. . Mussel-inspired cellulose nanocomposite tough hydrogels with synergistic self-healing, adhesive, and strain-sensitive properties . Chem. Mater. , 2018 . 30 3110 -3121 . DOI:10.1021/acs.chemmater.8b01172http://doi.org/10.1021/acs.chemmater.8b01172 .
Khan, Z. U.; Edberg, J.; Hamedi, M. M.; Gabrielsson, R.; Granberg, H.; Wagberg, L.; Engquist, I.; Berggren, M.; Crispin, X. . Thermoelectric polymers and their elastic aerogels . Adv. Mater. , 2016 . 28 4556 -4562 . DOI:10.1002/adma.201505364http://doi.org/10.1002/adma.201505364 .
Han, S.; Alvi, N. U. H.; Granlof, L.; Granberg, H.; Berggren, M.; Fabiano, S.; Crispin, X. . A multiparameter pressure-temperature-humidity sensor based on mixed ionic-electronic cellulose aerogels . Adv. Sci. , 2019 . 6 1802128 DOI:10.1002/advs.201802128http://doi.org/10.1002/advs.201802128 .
Wang, Y.; Wang, H.; Wang, H.; Zhang, M.; Liang, X.; Xia, K.; Zhang, Y. . Calcium gluconate derived carbon nanosheet intrinsically decorated with nanopapillae for multifunctional printed flexible electronics . ACS Appl. Mater. Interfaces , 2019 . 11 20272 -20280 . DOI:10.1021/acsami.9b04060http://doi.org/10.1021/acsami.9b04060 .
Li, Y.; Samad, Y. A.; Taha, T.; Cai, G.; Fu, S. Y.; Liao, K. . Highly flexible strain sensor from tissue paper for wearable electronics . ACS Sustain. Chem. Eng. , 2016 . 4 4288 -4295 . DOI:10.1021/acssuschemeng.6b00783http://doi.org/10.1021/acssuschemeng.6b00783 .
Chen, S.; Song, Y.; Ding, D.; Ling, Z.; Xu, F. . Flexible and anisotropic strain sensor based on carbonized crepe paper with aligned cellulose fibers . Adv. Funct. Mater. , 2018 . 28 1802547 DOI:10.1002/adfm.201802547http://doi.org/10.1002/adfm.201802547 .
Wu, Z. Y.; Li, C.; Liang, H. W.; Chen, J. F.; Yu, S. H. . Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose . Angew. Chem. Int. Ed. , 2013 . 52 2925 -2929 . DOI:10.1002/anie.201209676http://doi.org/10.1002/anie.201209676 .
Chyan, Y.; Ye, R.; Li, Y.; Singh, S. P.; Arnusch, C. J.; Tour, J. M. . Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food . ACS Nano , 2018 . 12 2176 -2183 . DOI:10.1021/acsnano.7b08539http://doi.org/10.1021/acsnano.7b08539 .
Lee, S.; Jeon, S. . Laser-induced graphitization of cellulose nanofiber substrates under ambient conditions . ACS Sustain. Chem. Eng. , 2019 . 7 2270 -2275 . DOI:10.1021/acssuschemeng.8b04955http://doi.org/10.1021/acssuschemeng.8b04955 .
Ye, R.; Chyan, Y.; Zhang, J.; Li, Y.; Han, X.; Kittrell, C.; Tour, J. M. . Laser-induced graphene formation on wood . Adv. Mater. , 2017 . 29 1702211 DOI:10.1002/adma.201702211http://doi.org/10.1002/adma.201702211 .
Le, T. S. D.; Park, S.; An, J.; Lee, P. S.; Kim, Y. J. . Ultrafast laser pulses enable one-step graphene patterning on woods and leaves for green electronics . Adv. Funct. Mater. , 2019 . 29 1902771 DOI:10.1002/adfm.201902771http://doi.org/10.1002/adfm.201902771 .
Wang, C.; Xia, K.; Zhang, M.; Jian, M.; Zhang, Y. . An all-silk-derived dual-mode e-skin for simultaneous temperature-pressure detection . ACS Appl. Mater. Interfaces , 2017 . 9 39484 -39492 . DOI:10.1021/acsami.7b13356http://doi.org/10.1021/acsami.7b13356 .
Wang, C.; Zhang, M.; Xia, K.; Gong, X.; Wang, H.; Yin, Z.; Guan, B.; Zhang, Y. . Intrinsically stretchable and conductive textile by a scalable process for elastic wearable electronics . ACS Appl. Mater. Interfaces , 2017 . 9 13331 -13338 . DOI:10.1021/acsami.7b02985http://doi.org/10.1021/acsami.7b02985 .
Wang, C.; Li, X.; Gao, E.; Jian, M.; Xia, K.; Wang, Q.; Xu, Z.; Ren, T.; Zhang, Y. . Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors . Adv. Mater. , 2016 . 28 6640 -6648 . DOI:10.1002/adma.201601572http://doi.org/10.1002/adma.201601572 .
Zhang, M.; Wang, C.; Liang, X.; Yin, Z.; Xia, K.; Wang, H.; Jian, M.; Zhang, Y. . Weft-knitted fabric for a highly stretchable and low-voltage wearable heater . Adv. Electron. Mater. , 2017 . 3 1700193 DOI:10.1002/aelm.201700193http://doi.org/10.1002/aelm.201700193 .
Wang, Q.; Jian, M.; Wang, C.; Zhang, Y. . Carbonized silk nanofiber membrane for transparent and sensitive electronic skin . Adv. Funct. Mater. , 2017 . 27 1605657 DOI:10.1002/adfm.201605657http://doi.org/10.1002/adfm.201605657 .
Zhang, M.; Wang, C.; Wang, H.; Jian, M.; Hao, X.; Zhang, Y. . Carbonized cotton fabric for high-performance wearable strain sensors . Adv. Funct. Mater. , 2017 . 27 1604795 DOI:10.1002/adfm.201604795http://doi.org/10.1002/adfm.201604795 .
Wang, C.; Xia, K.; Jian, M.; Wang, H.; Zhang, M.; Zhang, Y. . Carbonized silk georgette as an ultrasensitive wearable strain sensor for full-range human activity monitoring . J. Mater. Chem. C , 2017 . 5 7604 -7611 . DOI:10.1039/C7TC01962Ahttp://doi.org/10.1039/C7TC01962A .
Lu, W.; Jian, M.; Wang, Q.; Xia, K.; Zhang, M.; Wang, H.; He, W.; Lu, H.; Zhang, Y. . Hollow core-sheath nanocarbon spheres grown on carbonized silk fabrics for self-supported and nonenzymatic glucose sensing . Nanoscale , 2019 . 11 11856 -11863 . DOI:10.1039/C9NR01791Ghttp://doi.org/10.1039/C9NR01791G .
Ye, R.; James, D. K.; Tour, J. M. . Laser-induced graphene: from discovery to translation . Adv. Mater. , 2019 . 31 1803621 DOI:10.1002/adma.201803621http://doi.org/10.1002/adma.201803621 .
Huang, L.; Lin, S.; Xu, Z.; Zhou, H.; Duan, J.; Hu, B.; Zhou, J. . Fiber-based energy conversion devices for human-body energy harvesting . Adv. Mater. , 2019 . DOI:10.1002/adma.201902034http://doi.org/10.1002/adma.201902034 .
Liu, J.; Cao, H.; Jiang, B.; Xue, Y.; Fu, L. . Newborn 2D materials for flexible energy conversion and storage . Sci. China Mater. , 2016 . 59 459 -474. .
Li, S.; Huang, D.; Zhang, B.; Xu, X.; Wang, M.; Yang, G.; Shen, Y. . Flexible supercapacitors based on bacterial cellulose paper electrodes . Adv. Energy Mater. , 2014 . 4 1301655 DOI:10.1002/aenm.201301655http://doi.org/10.1002/aenm.201301655 .
Chen, Y.; Cai, K.; Liu, C.; Song, H.; Yang, X. . High-performance and breathable polypyrrole coated air-laid paper for flexible all-solid-state supercapacitors . Adv. Energy Mater. , 2017 . 7 1701247 DOI:10.1002/aenm.201701247http://doi.org/10.1002/aenm.201701247 .
Liu, L.; Yu, Y.; Yan, C.; Li, K.; Zheng, Z. . Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene-metallic textile composite electrodes . Nat. Commun. , 2015 . 6 7260 DOI:10.1038/ncomms8260http://doi.org/10.1038/ncomms8260 .
Zhang, C. J.; Kremer, M. P.; Seral-Ascaso, A.; Park, S. H.; McEvoy, N.; Anasori, B.; Gogotsi, Y.; Nicolosi, V. . Stamping of flexible, coplanar micro-supercapacitors using Mxene inks . Adv. Funct. Mater. , 2018 . 28 1705506 DOI:10.1002/adfm.201705506http://doi.org/10.1002/adfm.201705506 .
Huang, Q.; Wang, D.; Zheng, Z. . Textile-based electrochemical energy storage devices . Adv. Energy Mater. , 2016 . 6 1600783 DOI:10.1002/aenm.201600783http://doi.org/10.1002/aenm.201600783 .
Li, P.; Zhang, Y.; Zheng, Z. . Polymer-assisted metal deposition (PAMD) for flexible and wearable electronics: principle, materials, printing, and devices . Adv. Mater. , 2019 . 31 1902987 DOI:10.1002/adma.201902987http://doi.org/10.1002/adma.201902987 .
Das, C.; Krishnamoorthy, K. . Flexible microsupercapacitors using silk and cotton substrates . ACS Appl. Mater. Interfaces , 2016 . 8 29504 -29510 . DOI:10.1021/acsami.6b10431http://doi.org/10.1021/acsami.6b10431 .
Jost, K.; Durkin, D. P.; Haverhals, L. M.; Brown, E. K.; Langenstein, M.; de Long, H. C.; Trulove, P. C.; Gogotsi, Y.; Dion, G. . Natural fiber welded electrode yarns for knittable textile supercapacitors . Adv. Energy Mater. , 2015 . 5 1401286 DOI:10.1002/aenm.201401286http://doi.org/10.1002/aenm.201401286 .
Yang, Y.; Huang, Q.; Niu, L.; Wang, D.; Yan, C.; She, Y.; Zheng, Z. . Waterproof, ultrahigh areal-capacitance, wearable supercapacitor fabrics . Adv. Mater. , 2017 . 29 1606679 DOI:10.1002/adma.201606679http://doi.org/10.1002/adma.201606679 .
Weng, Z.; Su, Y.; Wang, D. W.; Li, F.; Du, J.; Cheng, H. M. . Graphene-cellulose paper flexible supercapacitors . Adv. Energy Mater. , 2011 . 1 917 -922 . DOI:10.1002/aenm.201100312http://doi.org/10.1002/aenm.201100312 .
Ko, Y.; Kwon, M.; Bae, W. K.; Lee, B.; Lee, S. W.; Cho, J. . Flexible supercapacitor electrodes based on real metal-like cellulose papers . Nat. Commun. , 2017 . 8 536 DOI:10.1038/s41467-017-00550-3http://doi.org/10.1038/s41467-017-00550-3 .
Zhang, L.; Zhu, P.; Zhou, F.; Zeng, W.; Su, H.; Li, G.; Gao, J.; Sun, R.; Wong, C. P. . Flexible asymmetrical solid-state supercapacitors based on laboratory filter paper . ACS Nano , 2016 . 10 1273 -1282 . DOI:10.1021/acsnano.5b06648http://doi.org/10.1021/acsnano.5b06648 .
Chen, C.; Xu, S.; Kuang, Y.; Gan, W.; Song, J.; Chen, G.; Pastel, G.; Liu, B.; Li, Y.; Huang, H.; Hu, L. . Nature-inspired tri-pathway design enabling high-performance flexible Li-O2 batteries . Adv. Energy Mater. , 2019 . 9 1802964 DOI:10.1002/aenm.201802964http://doi.org/10.1002/aenm.201802964 .
Zhu, Y. H.; Yuan, S.; Bao, D.; Yin, Y. B.; Zhong, H. X.; Zhang, X. B.; Yan, J. M.; Jiang, Q. . Decorating waste cloth via industrial wastewater for tube-type flexible and wearable sodium-ion batteries . Adv. Mater. , 2017 . 29 1603719 DOI:10.1002/adma.201603719http://doi.org/10.1002/adma.201603719 .
Li, M.; Wahyudi, W.; Kumar, P.; Wu, F.; Yang, X.; Li, H.; Li, L. J.; Ming, J. . Scalable approach to construct free-standing and flexible carbon networks for lithium-sulfur battery . ACS Appl. Mater. Interfaces , 2017 . 9 8047 -8054 . DOI:10.1021/acsami.6b12546http://doi.org/10.1021/acsami.6b12546 .
Xu, S.; Chen, C.; Kuang, Y.; Song, J.; Gan, W.; Liu, B.; Hitz, E. M.; Connell, J. W.; Lin, Y.; Hu, L. . Flexible lithium-CO2 battery with ultrahigh capacity and stable cycling . Energ. Environ. Sci. , 2018 . 11 3231 -3237 . DOI:10.1039/C8EE01468Jhttp://doi.org/10.1039/C8EE01468J .
Ma, Y.; Xie, X.; Lv, R.; Na, B.; Ouyang, J.; Liu, H. . Nanostructured polyaniline-cellulose papers for solid-state flexible aqueous Zn-ion battery . ACS Sustain. Chem. Eng. , 2018 . 6 8697 -8703 . DOI:10.1021/acssuschemeng.8b01014http://doi.org/10.1021/acssuschemeng.8b01014 .
Cheng, Q.; Ye, D.; Yang, W.; Zhang, S.; Chen, H.; Chang, C.; Zhang, L. . Construction of transparent cellulose-based nanocomposite papers and potential application in flexible solar cells . ACS Sustain. Chem. Eng. , 2018 . 6 8040 -8047 . DOI:10.1021/acssuschemeng.8b01599http://doi.org/10.1021/acssuschemeng.8b01599 .
Jia, X.; Wang, C.; Zhao, C.; Ge, Y.; Wallace, G. G. . Toward biodegradable Mg-air bioelectric batteries composed of silk fibroin-polypyrrole film . Adv. Funct. Mater. , 2016 . 26 1454 -1462 . DOI:10.1002/adfm.201503498http://doi.org/10.1002/adfm.201503498 .
Yang, X.; Shi, K.; Zhitomirsky, I.; Cranston, E. D. . Cellulose nanocrystal aerogels as universal 3D lightweight substrates for supercapacitor materials . Adv. Mater. , 2015 . 27 6104 -6109 . DOI:10.1002/adma.201502284http://doi.org/10.1002/adma.201502284 .
Zhang, T. W.; Tian, T.; Shen, B.; Song, Y. H.; Yao, H. B. . Recent advances on biopolymer fiber based membranes for lithium-ion battery separators . Compos. Commun. , 2019 . 14 7 -14 . DOI:10.1016/j.coco.2019.05.003http://doi.org/10.1016/j.coco.2019.05.003 .
Waqas, M.; Ali, S.; Feng, C.; Chen, D.; Han, J.; He, W. . Recent development in separators for high-temperature lithium-ion batteries . Small , 2019 . 15 1901689 .
Zhang, W.; Tu, Z.; Qian, J.; Choudhury, S.; Archer, L. A.; Lu, Y. . Design principles of functional polymer separators for high-energy, metal-based batteries . Small , 2018 . 14 1703001 DOI:10.1002/smll.201703001http://doi.org/10.1002/smll.201703001 .
Pereira, R. F. P.; Gonçalves, R.; Fernandes, M.; Costa, C. M.; Silva, M. M.; de Zea Bermudez, V.; Lanceros-Mendez, S. . Bombyx mori silkworm cocoon separators for lithium-ion batteries with superior safety and sustainability . Adv. Sustain. Syst. , 2018 . 2 1800098 DOI:10.1002/adsu.201800098http://doi.org/10.1002/adsu.201800098 .
Tan, X.; Zhao, W.; Mu, T. . Controllable exfoliation of natural silk fibers into nanofibrils by protein denaturant deep eutectic solvent: nanofibrous strategy for multifunctional membranes . Green Chem. , 2018 . 20 3625 -3633 . DOI:10.1039/C8GC01609Ghttp://doi.org/10.1039/C8GC01609G .
Pereira, R. F. P.; Brito-Pereira, R.; Goncalves, R.; Silva, M. P.; Costa, C. M.; Silva, M. M.; de Zea Bermudez, V.; Lanceros-Mendez, S. . Silk fibroin separators: a step toward lithium-ion batteries with enhanced sustainability . ACS Appl. Mater. Interfaces , 2018 . 10 5385 -5394 . DOI:10.1021/acsami.7b13802http://doi.org/10.1021/acsami.7b13802 .
Zhang, L. C.; Sun, X.; Hu, Z.; Yuan, C. C.; Chen, C. H. . Rice paper as a separator membrane in lithium-ion batteries . J. Power Sources , 2012 . 204 149 -154 . DOI:10.1016/j.jpowsour.2011.12.028http://doi.org/10.1016/j.jpowsour.2011.12.028 .
Yu, B. C.; Park, K.; Jang, J. H.; Goodenough, J. B. . Cellulose-based porous membrane for suppressing Li dendrite formation in lithium-sulfur battery . ACS Energy Lett. , 2016 . 1 633 -637 . DOI:10.1021/acsenergylett.6b00209http://doi.org/10.1021/acsenergylett.6b00209 .
Pan, R.; Sun, R.; Wang, Z.; Lindh, J.; Edström, K.; Strømme, M.; Nyholm, L. . Sandwich-structured nano/micro fiber-based separators for lithium metal batteries . Nano Energy , 2019 . 55 316 -326 . DOI:10.1016/j.nanoen.2018.11.005http://doi.org/10.1016/j.nanoen.2018.11.005 .
Zolin, L.; Destro, M.; Chaussy, D.; Penazzi, N.; Gerbaldi, C.; Beneventi, D. . Aqueous processing of paper separators by filtration dewatering: towards Li-ion paper batteries . J. Mater. Chem. A , 2015 . 3 14894 -14901 . DOI:10.1039/C5TA03716Fhttp://doi.org/10.1039/C5TA03716F .
Zhang, T. W.; Chen, J. L.; Tian, T.; Shen, B.; Peng, Y. D.; Song, Y. H.; Jiang, B.; Lu, L. L.; Yao, H. B.; Yu, S. H. . Sustainable separators for high-performance lithium ion batteries enabled by chemical modifications . Adv. Funct. Mater. , 2019 . 29 1902023 DOI:10.1002/adfm.201902023http://doi.org/10.1002/adfm.201902023 .
Zhang, T. W.; Shen, B.; Yao, H. B.; Ma, T.; Lu, L. L.; Zhou, F.; Yu, S. H. . Prawn shell derived chitin nanofiber membranes as advanced sustainable separators for Li/Na-ion batteries . Nano Lett. , 2017 . 17 4894 -4901 . DOI:10.1021/acs.nanolett.7b01875http://doi.org/10.1021/acs.nanolett.7b01875 .
Kim, J. K.; Kim, D. H.; Joo, S. H.; Choi, B.; Cha, A.; Kim, K. M.; Kwon, T. H.; Kwak, S. K.; Kang, S. J.; Jin, J. . Hierarchical chitin fibers with aligned nanofibrillar architectures: a nonwoven-mat separator for lithium metal batteries . ACS Nano , 2017 . 11 6114 -6121 . DOI:10.1021/acsnano.7b02085http://doi.org/10.1021/acsnano.7b02085 .
Singh, R.; Polu, A. R.; Bhattacharya, B.; Rhee, H. W.; Varlikli, C.; Singh, P. K. . Perspectives for solid biopolymer electrolytes in dye sensitized solar cell and battery application . Renew. Sust. Energ. Rev. , 2016 . 65 1098 -1117 . DOI:10.1016/j.rser.2016.06.026http://doi.org/10.1016/j.rser.2016.06.026 .
Willgert, M.; Leijonmarck, S.; Lindbergh, G.; Malmström, E.; Johansson, M. . Cellulose nanofibril reinforced composite electrolytes for lithium ion battery applications . J. Mater. Chem. A , 2014 . 2 13556 DOI:10.1039/C4TA01139Bhttp://doi.org/10.1039/C4TA01139B .
Zhao, N.; Wu, F.; Xing, Y.; Qu, W.; Chen, N.; Shang, Y.; Yan, M.; Li, Y.; Li, L.; Chen, R. . Flexible hydrogel electrolyte with superior mechanical properties based on poly(vinyl alcohol) and bacterial cellulose for the solid-state zinc-air batteries . ACS Appl. Mater. Interfaces , 2019 . 11 15537 -15542 . DOI:10.1021/acsami.9b00758http://doi.org/10.1021/acsami.9b00758 .
Buraidah, M. H.; Teo, L. P.; Au, Yong C. M.; Shah, S.; Arof, A. K. . Performance of polymer electrolyte based on chitosan blended with poly(ethylene oxide) for plasmonic dye-sensitized solar cell . Opt. Mater. , 2016 . 57 202 -211 . DOI:10.1016/j.optmat.2016.04.028http://doi.org/10.1016/j.optmat.2016.04.028 .
Zhao, D.; Chen, C.; Zhang, Q.; Chen, W.; Liu, S.; Wang, Q.; Liu, Y.; Li, J.; Yu, H. . High performance, flexible, solid-state supercapacitors based on a renewable and biodegradable mesoporous cellulose membrane . Adv. Energy Mater. , 2017 . 7 1700739 DOI:10.1002/aenm.201700739http://doi.org/10.1002/aenm.201700739 .
Jia, X.; Wang, C.; Ranganathan, V.; Napier, B.; Yu, C.; Chao, Y.; Forsyth, M.; Omenetto, F. G.; MacFarlane, D. R.; Wallace, G. G. . A biodegradable thin-film magnesium primary battery using silk fibroin-ionic liquid polymer electrolyte . ACS Energy Lett. , 2017 . 2 831 -836 . DOI:10.1021/acsenergylett.7b00012http://doi.org/10.1021/acsenergylett.7b00012 .
Xu, D.; Wang, B.; Wang, Q.; Gu, S.; Li, W.; Jin, J.; Chen, C.; Wen, Z. . High-strength internal cross-linking bacterial cellulose-network-based gel polymer electrolyte for dendrite-suppressing and high-rate lithium batteries . ACS Appl. Mater. Interfaces , 2018 . 10 17809 -17819 . DOI:10.1021/acsami.8b00034http://doi.org/10.1021/acsami.8b00034 .
Cao, L.; Yang, M.; Wu, D.; Lyu, F.; Sun, Z.; Zhong, X.; Pan, H.; Liu, H.; Lu, Z. . Biopolymer-chitosan based supramolecular hydrogels as solid state electrolytes for electrochemical energy storage . Chem. Commun. , 2017 . 53 1615 -1618 . DOI:10.1039/C6CC08658Fhttp://doi.org/10.1039/C6CC08658F .
Wan, S.; Peng, J.; Jiang, L.; Cheng, Q. . Bioinspired graphene-based nanocomposites and their application in flexible energy devices . Adv. Mater. , 2016 . 28 7862 -7898 . DOI:10.1002/adma.201601934http://doi.org/10.1002/adma.201601934 .
Shown, I.; Ganguly, A.; Chen, L. C.; Chen, K. H. . Conducting polymer-based flexible supercapacitor . Energy Sci. Eng. , 2015 . 3 2 -26 . DOI:10.1002/ese3.50http://doi.org/10.1002/ese3.50 .
Zhang, X.; Hou, L.; Ciesielski, A.; Samorì, P. . 2D materials beyond graphene for high-performance energy storage applications . Adv. Energy Mater. , 2016 . 6 1600671 DOI:10.1002/aenm.201600671http://doi.org/10.1002/aenm.201600671 .
Wang, X.; Yao, C.; Wang, F.; Li, Z. . Cellulose-based nanomaterials for energy applications . Small , 2017 . 13 1702240 DOI:10.1002/smll.201702240http://doi.org/10.1002/smll.201702240 .
Heo, J. S.; Eom, J.; Kim, Y. H.; Park, S. K. . Recent progress of textile-based wearable electronics: a comprehensive review of materials, devices, and applications . Small , 2018 . 14 1703034 DOI:10.1002/smll.201703034http://doi.org/10.1002/smll.201703034 .
Zhao, C. E.; Gai, P.; Song, R.; Chen, Y.; Zhang, J.; Zhu, J. J. . Nanostructured material-based biofuel cells: recent advances and future prospects . Chem. Soc. Rev. , 2017 . 46 1545 -1564 . DOI:10.1039/C6CS00044Dhttp://doi.org/10.1039/C6CS00044D .
Kim, H. M.; Sun, H. H.; Belharouak, I.; Manthiram, A.; Sun, Y. K. . An alternative approach to enhance the performance of high sulfur-loading electrodes for Li-S batteries . ACS Energy Lett. , 2016 . 1 136 -141 . DOI:10.1021/acsenergylett.6b00104http://doi.org/10.1021/acsenergylett.6b00104 .
Kuang, Y.; Chen, C.; Pastel, G.; Li, Y.; Song, J.; Mi, R.; Kong, W.; Liu, B.; Jiang, Y.; Yang, K.; Hu, L. . Conductive cellulose nanofiber enabled thick electrode for compact and flexible energy storage devices . Adv. Energy Mater. , 2018 . 8 1802398 DOI:10.1002/aenm.201802398http://doi.org/10.1002/aenm.201802398 .
Chen, C.; Lee, S. H.; Cho, M.; Kim, J.; Lee, Y. . Cross-linked chitosan as an efficient binder for Si anode of Li-ion batteries . ACS Appl. Mater. Interfaces , 2016 . 8 2658 -2665 . DOI:10.1021/acsami.5b10673http://doi.org/10.1021/acsami.5b10673 .
Hou, J.; Cao, C.; Idrees, F.; Ma, X. . Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors . ACS Nano , 2015 . 9 2556 -2564 . DOI:10.1021/nn506394rhttp://doi.org/10.1021/nn506394r .
Yun, Y. S.; Cho, S. Y.; Shim, J.; Kim, B. H.; Chang, S. J.; Baek, S. J.; Huh, Y. S.; Tak, Y.; Park, Y. W.; Park, S.; Jin, H. J. . Microporous carbon nanoplates from regenerated silk proteins for supercapacitors . Adv. Mater. , 2013 . 25 1993 -1998 . DOI:10.1002/adma.201204692http://doi.org/10.1002/adma.201204692 .
Wang, C.; Chen, W.; Xia, K.; Xie, N.; Wang, H.; Zhang, Y. . Silk-derived 2D porous carbon nanosheets with atomically-dispersed Fe-Nx-C sites for highly efficient oxygen reaction catalysts . Small , 2019 . 15 1804966 DOI:10.1002/smll.201804966http://doi.org/10.1002/smll.201804966 .
Wang, C.; Xie, N. H.; Zhang, Y.; Huang, Z.; Xia, K.; Wang, H.; Guo, S.; Xu, B. Q.; Zhang, Y. . Silk-derived highly active oxygen electrocatalysts for flexible and rechargeable Zn-air batteries . Chem. Mater. , 2019 . 31 1023 -1029 . DOI:10.1021/acs.chemmater.8b04572http://doi.org/10.1021/acs.chemmater.8b04572 .
Zhou, B.; Zhang, M.; He, W.; Wang, H.; Jian, M.; Zhang, Y. . Blue rose-inspired approach towards highly graphitic carbons for efficient electrocatalytic water splitting . Carbon , 2019 . 150 21 -26 . DOI:10.1016/j.carbon.2019.05.009http://doi.org/10.1016/j.carbon.2019.05.009 .
You, J.; Li, M.; Ding, B.; Wu, X.; Li, C. . Crab chitin-based 2D soft nanomaterials for fully biobased electric devices . Adv. Mater. , 2017 . 29 1606895 DOI:10.1002/adma.201606895http://doi.org/10.1002/adma.201606895 .
Li, Y.; Hu, Y. S.; Titirici, M. M.; Chen, L.; Huang, X. . Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries . Adv. Energy Mater. , 2016 . 6 1600659 DOI:10.1002/aenm.201600659http://doi.org/10.1002/aenm.201600659 .
Song, H.; Xu, S.; Li, Y.; Dai, J.; Gong, A.; Zhu, M.; Zhu, C.; Chen, C.; Chen, Y.; Yao, Y.; Liu, B.; Song, J.; Pastel, G.; Hu, L. . Hierarchically porous, ultrathick, “breathable” wood-derived cathode for lithium-oxygen batteries . Adv. Energy Mater. , 2018 . 8 1701203 DOI:10.1002/aenm.201701203http://doi.org/10.1002/aenm.201701203 .
Shen, F.; Zhu, H.; Luo, W.; Wan, J.; Zhou, L.; Dai, J.; Zhao, B.; Han, X.; Fu, K.; Hu, L. . Chemically crushed wood cellulose fiber towards high-performance sodium-ion batteries . ACS Appl. Mater. Interfaces , 2015 . 7 23291 -23296 . DOI:10.1021/acsami.5b07583http://doi.org/10.1021/acsami.5b07583 .
Xia, T.; Zhang, X.; Zhao, J.; Li, Q.; Ao, C.; Hu, R.; Zheng, Z.; Zhang, W.; Lu, C.; Deng, Y. . Flexible and conductive carbonized cotton fabrics coupled with a nanostructured Ni(OH)2 coating for high performance aqueous symmetric supercapacitors . ACS Sustain. Chem. Eng. , 2019 . 7 5231 -5239 . DOI:10.1021/acssuschemeng.8b06150http://doi.org/10.1021/acssuschemeng.8b06150 .
Xu, X.; Zhou, J.; Nagaraju, D. H.; Jiang, L.; Marinov, V. R.; Lubineau, G.; Alshareef, H. N.; Oh, M. . Flexible, highly graphitized carbon aerogels based on bacterial cellulose/lignin: catalyst-free synthesis and its application in energy storage devices . Adv. Funct. Mater. , 2015 . 25 3193 -3202 . DOI:10.1002/adfm.201500538http://doi.org/10.1002/adfm.201500538 .
Ding, B.; Huang, S.; Pang, K.; Duan, Y.; Zhang, J. . Nitrogen-enriched carbon nanofiber aerogels derived from marine chitin for energy storage and environmental remediation . ACS Sustain. Chem. Eng. , 2018 . 6 177 -185 . DOI:10.1021/acssuschemeng.7b02164http://doi.org/10.1021/acssuschemeng.7b02164 .
Bao, L.; Li, X. . Towards textile energy storage from cotton T-shirts . Adv. Mater. , 2012 . 24 3246 -3252 . DOI:10.1002/adma.201200246http://doi.org/10.1002/adma.201200246 .
Gao, Z.; Zhang, Y.; Song, N.; Li, X. . Towards flexible lithium-sulfur battery from natural cotton textile . Electrochim. Acta , 2017 . 246 507 -516 . DOI:10.1016/j.electacta.2017.06.069http://doi.org/10.1016/j.electacta.2017.06.069 .
Ma, D. L.; Ma, Y.; Chen, Z. W.; Hu, A. M. . A silk fabric derived carbon fibre net for transparent capacitive touch pads and all-solid supercapacitors . J. Mater. Chem. A , 2017 . 5 20608 -20614 . DOI:10.1039/C7TA05383Ehttp://doi.org/10.1039/C7TA05383E .
Gao, Z.; Song, N.; Zhang, Y.; Li, X. . Cotton-textile-enabled, flexible lithium-ion batteries with enhanced capacity and extended lifespan . Nano Lett. , 2015 . 15 8194 -8203 . DOI:10.1021/acs.nanolett.5b03698http://doi.org/10.1021/acs.nanolett.5b03698 .
Kim, H. J.; Kim, J. H.; Jun, K. W.; Kim, J. H.; Seung, W. C.; Kwon, O. H.; Park, J. Y.; Kim, S. W.; Oh, I. K. . Silk nanofiber-networked bio-triboelectric generator: silk bio-TEG . Adv. Energy Mater. , 2016 . 6 1502329 DOI:10.1002/aenm.201502329http://doi.org/10.1002/aenm.201502329 .
He, X.; Zou, H.; Geng, Z.; Wang, X.; Ding, W.; Hu, F.; Zi, Y.; Xu, C.; Zhang, S. L.; Yu, H.; Xu, M.; Zhang, W.; Lu, C.; Wang, Z. L. . A hierarchically nanostructured cellulose fiber-based triboelectric nanogenerator for self-powered healthcare products . Adv. Funct. Mater. , 2018 . 28 1802398 .
Zhang, M.; Zhao, M.; Jian, M.; Wang, C.; Yu, A.; Yin, Z.; Liang, X.; Wang, H.; Xia, K.; Liang, X.; Zhai, J.; Zhang, Y. . Printable smart pattern for multifunctional energy-management e-textile . Matter , 2019 . 1 168 -179 . DOI:10.1016/j.matt.2019.02.003http://doi.org/10.1016/j.matt.2019.02.003 .
0
浏览量
5
Downloads
2
CSCD
关联资源
相关文章
相关作者
相关机构