1.Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science Ministry of Education, School of Chemistry, Beijing Institute of Technology, Beijing 100081, China
qhan@bit.edu.cn (Q.H.)
lqu@bit.edu.cn (L.T.Q.)
Scan for full text
Guan-Hang Yu, Qing Han, Liang-Ti Qu. Graphene Fibers: Advancing Applications in Sensor, Energy Storage and Conversion[J]. Chinese Journal of Polymer Science, 2019,37(6):535-547.
Guan-Hang Yu, Qing Han, Liang-Ti Qu. Graphene Fibers: Advancing Applications in Sensor, Energy Storage and Conversion[J]. Chinese Journal of Polymer Science, 2019,37(6):535-547.
Guan-Hang Yu, Qing Han, Liang-Ti Qu. Graphene Fibers: Advancing Applications in Sensor, Energy Storage and Conversion[J]. Chinese Journal of Polymer Science, 2019,37(6):535-547. DOI: 10.1007/s10118-019-2245-9.
Guan-Hang Yu, Qing Han, Liang-Ti Qu. Graphene Fibers: Advancing Applications in Sensor, Energy Storage and Conversion[J]. Chinese Journal of Polymer Science, 2019,37(6):535-547. DOI: 10.1007/s10118-019-2245-9.
Graphene fibers are a kind of novel carbon fibers assembled by orderly aligned graphene sheets with high flexibility, good conductivity, high thermal conductivity, and low density, which make them possible to be widely used in high-performance and multi-functional compound materials as well as flexible electronic devices. In this review, we summarize the research progress in the synthesis of graphene fibers, and their applications in sensor, energy storage, and energy conversion. Furthermore, the current issues and some prospects for the future trend of graphene fibers are discussed.
Graphene fibersAssemblyFunctionalizationSensorEnergy storage and conversion
Donnet, J. B. in Carbon fibers. Marcel Dekker, Inc, 1998.
He, F. in Carbon fiber and graphite fiber. Chemical Industry Press, 2010.
Jeffries, R . Prospects for carbon fibres . Nature , 1971 . 232 (5309 ):304 -307 . DOI:10.1038/232304a0http://doi.org/10.1038/232304a0 .
Frank, E.; Steudle, L. M.; Ingildeev, D.; Spörl, J. M.; Buchmeiser, M. R . Carbon fibers: Precursor systems, processing, structure, and properties . Angew. Chem. Int. Ed. , 2014 . 53 (21 ):5262 -5298 . DOI:10.1002/anie.v53.21http://doi.org/10.1002/anie.v53.21 .
Standage, A. E.; Prescott, R . High elastic modulus carbon fibre . Nature , 1966 . 211 (5045 ):169 -169. .
Moreton, R.; Watt, W.; Johnson, W . Carbon fibres of high strength and high breaking strain . Nature , 1967 . 213 (5077 ):690 -691 . DOI:10.1038/213690a0http://doi.org/10.1038/213690a0 .
Iijima, S . Helical microtubules of graphitic carbon . Nature , 1991 . 354 (6348 ):56 -58 . DOI:10.1038/354056a0http://doi.org/10.1038/354056a0 .
Dalton, A. B.; Collins, S.; Munoz, E.; Razal, J. M.; Ebron, V. H.; Ferraris, J. P.; Coleman, J. N.; Kim, B. G.; Baughman, R. H . Super-tough carbon-nanotube fibres-these extraordinary composite fibres can be woven into electronic textiles . Nature , 2003 . 423 (6941 ):703 -703 . DOI:10.1038/423703ahttp://doi.org/10.1038/423703a .
Ericson, L. M.; Fan, H.; Peng, H. Q.; Davis, V. A.; Zhou, W.; Sulpizio, J.; Wang, Y. H.; Booker, R.; Vavro, J.; Guthy, C.; Parra-Vasquez, A. N. G.; Kim, M. J.; Ramesh, S.; Saini, R. K.; Kittrell, C.; Lavin, G.; Schmidt, H.; Adams, W. W.; Billups, W. E.; Pasquali, M.; Hwang, W. F.; Hauge, R. H.; Fischer, J. E.; Smalley, R. E . Macroscopic, neat, single-walled carbon nanotube fibers . Science , 2004 . 305 (5689 ):1447 -1450 . DOI:10.1126/science.1101398http://doi.org/10.1126/science.1101398 .
Vigolo, B.; Penicaud, A.; Coulon, C.; Sauder, C.; Pailler, R.; Journet, C.; Bernier, P.; Poulin, P . Macroscopic fibers and ribbons of oriented carbon nanotubes . Science , 2000 . 290 (5495 ):1331 -1334 . DOI:10.1126/science.290.5495.1331http://doi.org/10.1126/science.290.5495.1331 .
Davis, V. A.; Parra-Vasquez, A. N. G.; Green, M. J.; Rai, P. K.; Behabtu, N.; Prieto, V.; Booker, R. D.; Schmidt, J.; Kesselman, E.; Zhou, W.; Fan, H.; Adams, W. W.; Hauge, R. H.; Fischer, J. E.; Cohen, Y.; Talmon, Y.; Smalley, R. E.; Pasquali, M . True solutions of single-walled carbon nanotubes for assembly into macroscopic materials . Nat. Nanotechnol. , 2009 . 4 (12 ):830 -834 . DOI:10.1038/nnano.2009.302http://doi.org/10.1038/nnano.2009.302 .
Jiang, K. L.; Li, Q. Q.; Fan, S. S . Nanotechnology: Spinning continuous carbon nanotube yarns-carbon nanotubes weave their way into a range of imaginative macroscopic applications . Nature , 2002 . 419 (6909 ):801 -801 . DOI:10.1038/419801ahttp://doi.org/10.1038/419801a .
Li, Y. L.; Kinloch, I. A.; Windle, A. H . Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis . Science , 2004 . 304 (5668 ):276 -278 . DOI:10.1126/science.1094982http://doi.org/10.1126/science.1094982 .
Zhang, M.; Atkinson, K. R.; Baughman, R. H . Multifunctional carbon nanotube yarns by downsizing an ancient technology . Science , 2004 . 306 (5700 ):1358 -1361 . DOI:10.1126/science.1104276http://doi.org/10.1126/science.1104276 .
Zhang, X. B.; Jiang, K. L.; Teng, C.; Liu, P.; Zhang, L.; Kong, J.; Zhang, T. H.; Li, Q. Q.; Fan, S. S . Spinning and processing continuous yarns from 4-inch wafer scale superaligned carbon nanotube arrays . Adv. Mater. , 2006 . 18 (12 ):1505 -1510 . DOI:10.1002/(ISSN)1521-4095http://doi.org/10.1002/(ISSN)1521-4095 .
Weng, W. Z.; He, S. S.; Song, H. Y.; Li, X. Q.; Cao, L. H.; Hu, Y. J.; Cui, J.; Zhou, Q. R.; Peng, H. S.; Su, J. C . Aligned carbon nanotubes reduce hypertrophic scar via regulating cell behavior . ACS Nano , 2018 . 12 (8 ):7601 -7612 . DOI:10.1021/acsnano.7b07439http://doi.org/10.1021/acsnano.7b07439 .
He, S. S.; Zhang, Y. Y.; Qiu, L. B.; Zhang, L. S.; Xie, Y.; Pan, J.; Chen, P. N.; Wang, B. J.; Xu, X. J.; Hu, Y. J.; Dinh, C. T.; De Luna, P.; Banis, M. N.; Wang, Z. Q.; Sham, T. K.; Gong, X. G.; Zhang, B.; Peng, H. S.; Sargent, E. H . Chemical-to-electricity carbon: Water device . Adv. Mater. , 2018 . 30 (18 ):1707635 DOI:10.1002/adma.201707635http://doi.org/10.1002/adma.201707635 .
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A . Electric field effect in atomically thin carbon films . Science , 2004 . 306 (5696 ):666 -669 . DOI:10.1126/science.1102896http://doi.org/10.1126/science.1102896 .
Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N . Superior thermal conductivity of single-layer graphene . Nano Lett. , 2008 . 8 (3 ):902 -907 . DOI:10.1021/nl0731872http://doi.org/10.1021/nl0731872 .
Lee, C. G.; Wei, X. D.; Kysar, J. W.; Hone, J . Measurement of the elastic properties and intrinsic strength of monolayer graphene . Science , 2008 . 321 (5887 ):385 -388 . DOI:10.1126/science.1157996http://doi.org/10.1126/science.1157996 .
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A . Two-dimensional gas of massless dirac fermions in graphene . Nature , 2005 . 438 (7065 ):197 -200 . DOI:10.1038/nature04233http://doi.org/10.1038/nature04233 .
Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P . Experimental observation of the quantum Hall effect and Berry’s phase in graphene . Nature , 2005 . 438 (7065 ):201 -204 . DOI:10.1038/nature04235http://doi.org/10.1038/nature04235 .
Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L . Ultrahigh electron mobility in suspended graphene . Solid State Commun. , 2008 . 146 (9-10 ):351 -355 . DOI:10.1016/j.ssc.2008.02.024http://doi.org/10.1016/j.ssc.2008.02.024 .
Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K . Giant intrinsic carrier mobilities in graphene and its bilayer . Phys. Rev. Lett. , 2008 . 100 (1 ):016602 DOI:10.1103/PhysRevLett.100.016602http://doi.org/10.1103/PhysRevLett.100.016602 .
Chen, H. J.; Jang, C.; Xiao, S. D.; Ishigami, M.; Fuhrer, M. S . Intrinsic and extrinsic performance limits of graphene devices on SiO2 . Nat. Nanotechnol. , 2008 . 3 (4 ):206 -209 . DOI:10.1038/nnano.2008.58http://doi.org/10.1038/nnano.2008.58 .
Hummers, W. S.; Offeman, R. E . Preparation of graphitic oxide . J. Am. Chem. Soc. , 1958 . 80 (6 ):1339 -1339 . DOI:10.1021/ja01539a017http://doi.org/10.1021/ja01539a017 .
Brodie, B. C . On the atomic weight of graphite . Philos. Trans. R. Soc. Lond. , 1859 . 149 249 -259 . DOI:10.1098/rstl.1859.0013http://doi.org/10.1098/rstl.1859.0013 .
Staudenmaier, L . Verfahren zur darstellung der graphitsäure . Ber. Dtsch. Chem. Ges. , 1898 . 31 (2 ):1481 -1487 . DOI:10.1002/(ISSN)1099-0682http://doi.org/10.1002/(ISSN)1099-0682 .
Si, Y. C.; Samulski, E. T . Synthesis of water soluble graphene . Nano Lett. , 2008 . 8 (6 ):1679 -1682 . DOI:10.1021/nl080604hhttp://doi.org/10.1021/nl080604h .
Pei, S.; Zhao, J.; Du, J.; Ren, W.; Cheng, H. M . Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids . Carbon , 2010 . 48 (15 ):4466 -4474 . DOI:10.1016/j.carbon.2010.08.006http://doi.org/10.1016/j.carbon.2010.08.006 .
Moon, K.; Lee, J.; Ruoff, R. S.; Lee, H . Reduced graphene oxide by chemical graphitization . Nat. Commun. , 2010 . 1 73 -78. .
Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y. S . Evaluation of solution-processed reduced graphene oxide films as transparent conductors . ACS Nano , 2008 . 2 (3 ):463 -470 . DOI:10.1021/nn700375nhttp://doi.org/10.1021/nn700375n .
McAllister, M. J.; Li, J.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud’homme, R. K.; Aksay, I. A . Single sheet functionalized graphene by oxidation and thermal expansion of graphite . Chem. Mater. , 2007 . 19 (18 ):4396 -4404 . DOI:10.1021/cm0630800http://doi.org/10.1021/cm0630800 .
Zhu, Y. W.; Stoller, M. D.; Cai, W. W.; Velamakanni, A.; Piner, R. D.; Chen, D.; Ruoff, R. S . Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets . ACS Nano , 2010 . 4 (2 ):1227 -1233 . DOI:10.1021/nn901689khttp://doi.org/10.1021/nn901689k .
Wang, Z. J.; Zhou, X. Z.; Zhang, J.; Boey, F.; Zhang, H . Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase . J. Phys. Chem, C , 2009 . 113 (32 ):14071 -14075 . DOI:10.1021/jp906348xhttp://doi.org/10.1021/jp906348x .
Guo, H.; Wang, X.; Qian, Q.; Wang, F.; Xia, X. H . A green approach to the dynthesis of graphene nanosheets . ACS Nano , 2009 . 3 (9 ):2653 -2659 . DOI:10.1021/nn900227dhttp://doi.org/10.1021/nn900227d .
Geim, A. K.; Novoselov, K. S . The rise of graphene . Nat. Mater. , 2006 . 6 (3 ):183 -191. .
Xu, Z.; Liu, Y.; Zhao, X.; Peng, L.; Sun, H.; Xu, Y.; Ren, X.; Jin, C.; Xu, P.; Wang, M.; Gao, C . Ultrastiff and strong graphene fibers via full-scale synergetic defect engineering . Adv. Mater. , 2016 . 28 (30 ):6449 -6456 . DOI:10.1002/adma.201506426http://doi.org/10.1002/adma.201506426 .
Liu, Y. J.; Liang, H.; Xu, Z.; Xi, J. B.; Chen, G. F.; Gao, W. W.; Xue, M. Q.; Gao, C . Superconducting continuous graphene fibers via calcium intercalation . ACS Nano , 2017 . 11 (4 ):4301 -4306 . DOI:10.1021/acsnano.7b01491http://doi.org/10.1021/acsnano.7b01491 .
Lim, L.; Liu, Y. S.; Liu, W. W.; Tjandra, R.; Rasenthiram, L.; Chen, Z. W.; Yu, A. P . All-in-one graphene based composite fiber: toward wearable supercapacitor . ACS Appl. Mater. Interfaces , 2017 . 9 (45 ):39576 -39583 . DOI:10.1021/acsami.7b10182http://doi.org/10.1021/acsami.7b10182 .
Meng, J.; Nie, W. Q.; Zhang, K.; Xu, F. J.; Ding, X.; Wang, S. R.; Qiu, Y. P . Enhancing electrochemical performance of graphene fiber-based supercapacitors by plasma treatment . ACS Appl. Mater. Interfaces , 2018 . 10 (16 ):13652 -13659 . DOI:10.1021/acsami.8b04438http://doi.org/10.1021/acsami.8b04438 .
Choi, S. J.; Yu, H. Y.; Jang, J. S.; Kim, M. H.; Kim, S. J.; Jeong, H. S.; Kim, I. D . Nitrogen-doped single graphene fiber with platinum water dissociation catalyst for wearable humidity sensor . Small , 2018 . 14 (13 ):1703934 DOI:10.1002/smll.v14.13http://doi.org/10.1002/smll.v14.13 .
Xu, Z.; Gao, C . Graphene chiral liquid crystals and macroscopic assembled fibres . Nat. Commun. , 2011 . 2 571 DOI:10.1038/ncomms1583http://doi.org/10.1038/ncomms1583 .
Xu, Z.; Zhang, Y.; Li, P. G.; Gao, C . Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores . ACS Nano , 2012 . 6 (8 ):7103 -7113 . DOI:10.1021/nn3021772http://doi.org/10.1021/nn3021772 .
Ritchie, R. O . The conflicts between strength and toughness . Nat. Mater. , 2011 . 10 (11 ):817 -822 . DOI:10.1038/nmat3115http://doi.org/10.1038/nmat3115 .
Li, M. C.; Zhang, X. H.; Wang, X.; Ru, Y.; Qiao, J. L . Ultrastrong graphene-based fibers with increased elongation . Nano Lett. , 2016 . 16 (10 ):6511 -6515 . DOI:10.1021/acs.nanolett.6b03108http://doi.org/10.1021/acs.nanolett.6b03108 .
Zhao, Y.; Jiang, C. C.; Hu, C. G.; Dong, Z. L.; Xue, J. L.; Meng, Y. N.; Zheng, N.; Chen, P. W.; Qu, L. T . Large-scale spinning assembly of neat, morphology-defined, graphene-based hollow fibers . ACS Nano , 2013 . 7 (3 ):2406 -2412 . DOI:10.1021/nn305674ahttp://doi.org/10.1021/nn305674a .
Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q . Self-assembled graphene hydrogel via a onestep hydrothermal process . ACS Nano , 2010 . 4 (7 ):4324 -4330 . DOI:10.1021/nn101187zhttp://doi.org/10.1021/nn101187z .
Dong, Z. L.; Jiang, C. C.; Cheng, H. H.; Zhao, Y.; Shi, G. Q.; Jiang, L.; Qu, L. T . Facile fabrication of light, flexible and multifunctional graphene fibers . Adv. Mater. , 2012 . 24 (14 ):1856 -1861 . DOI:10.1002/adma.v24.14http://doi.org/10.1002/adma.v24.14 .
Wu, G.; Tan, P. F.; Wu, X. J.; Peng, L.; Cheng, H. Y.; Wang, C. F.; Chen, W.; Yu, Z. Y.; Chen, S . High-performance wearable micro-supercapacitors based on microfluidic-directed nitrogen-doped graphene fiber electrodes . Adv. Funct. Mater. , 2017 . 27 (36 ):1702493 DOI:10.1002/adfm.v27.36http://doi.org/10.1002/adfm.v27.36 .
Hu, C. G.; Zhao, Y.; Cheng, H. H.; Wang, Y. H.; Dong, Z. L.; Jiang, C. C.; Zhai, X. Q.; Jiang, L.; Qu, L. T . Graphene microtubings: Controlled fabrication and site-specific functionalization . Nano Lett. , 2012 . 12 (11 ):5879 -5884 . DOI:10.1021/nl303243hhttp://doi.org/10.1021/nl303243h .
Ma, T.; Gao, H. L.; Cong, H. P.; Yao, H. B.; Wu, L.; Yu, Z. Y.; Chen, S. M.; Yu, S. H . A Bioinspired interface design for improving the strength and electrical conductivity of graphene-based fibers . Adv. Mater. , 2018 . 30 (15 ):1706435 DOI:10.1002/adma.v30.15http://doi.org/10.1002/adma.v30.15 .
Li, X. M.; Zhao, T. S.; Wang, K. L.; Yang, Y.; Wei, J. Q.; Kang, F. Y.; Wu, D. H.; Zhu, H. W . Directly drawing self-assembled, porous, and monolithic graphene fiber from chemical vapor deposition grown graphene film and its electrochemical properties . Langmuir , 2011 . 27 (19 ):12164 -12171 . DOI:10.1021/la202380ghttp://doi.org/10.1021/la202380g .
Li, X.; Sun, P. Z.; Fan, L. L.; Zhu, M.; Wang, K. L.; Zhong, M. L.; Wei, J. Q.; Wu, D. H.; Cheng, Y.; Zhu, H. W . Multifunctional graphene woven fabrics . Sci. Rep. , 2012 . 2 395 DOI:10.1038/srep00395http://doi.org/10.1038/srep00395 .
Chen, T.; Dai, L. M . Macroscopic graphene fibers directly assembled from CVD-grown fiber-shaped hollow graphene tubes . Angew. Chem. Int. Ed. , 2015 . 54 (49 ):14947 -14950 . DOI:10.1002/anie.201507246http://doi.org/10.1002/anie.201507246 .
Hu, C. G.; Zhai, X. Q.; Liu, L. L.; Zhao, Y.; Jiang, L.; Qu, L. T . Spontaneous reduction and assembly of graphene oxide into three-dimensional graphene network on arbitrary conductive substrates . Sci. Rep. , 2013 . 3 2065 DOI:10.1038/srep02065http://doi.org/10.1038/srep02065 .
Jang, E. Y.; Carretero-Gonzalez, J.; Choi, A.; Kim, W. J.; Kozlov, M. E.; Kim, T.; Kang, T. J.; Baek, S. J.; Kim, D. W.; Park, Y. W.; Baughman, R. H.; Kim, Y. H . Fibers of reduced graphene oxide nanoribbons . Nanotechnology , 2012 . 23 (23 ):235601 DOI:10.1088/0957-4484/23/23/235601http://doi.org/10.1088/0957-4484/23/23/235601 .
Zhao, F.; Zhao, Y.; Cheng, H. H.; Qu, L. T . A graphene fibriform responsor for sensing heat, humidity, and mechanical changes . Angew. Chem. Int. Ed. , 2015 . 54 (49 ):14951 -14955 . DOI:10.1002/anie.201508300http://doi.org/10.1002/anie.201508300 .
Ding, X. T.; Bai, J.; Xu, T.; Li, C. X.; Zhang, H. M.; Qu, L. T . A novel nitrogen-doped graphene fiber microelectrode with ultrahigh sensitivity for the detection of dopamine . Electrochem. Commun. , 2016 . 72 122 -125 . DOI:10.1016/j.elecom.2016.09.021http://doi.org/10.1016/j.elecom.2016.09.021 .
Zhou, G. M.; Li, F.; Cheng, H. M . Progress in flexible lithium batteries and future prospects . Energy Environ. Sci. , 2014 . 7 (4 ):1307 -1338 . DOI:10.1039/C3EE43182Ghttp://doi.org/10.1039/C3EE43182G .
Chen, B.; Liu, E. Z.; Cao, T. T.; He, F.; Shi, C. S.; He, C. N.; Ma, L. Y.; Li, Q. Y.; Li, J. J.; Zhao, N. Q . Controllable graphene incorporation and defect engineering in MoS2-TiO2 based composites: Towards high-performance lithium-ion batteries anode materials . Nano Energy , 2017 . 3 247 -256. .
Lee, J. G.; Kwon, Y. B.; Ju, J. Y.; Choi, S. H.; Kang, Y. K.; Yu, W. R.; Kim, D. W . Fiber electrode by one-pot wet-spinning of graphene and manganese oxide nanowires for wearable lithium-ion batteries . J. Appl. Electrochem. , 2017 . 47 (8 ):865 -875 . DOI:10.1007/s10800-017-1085-yhttp://doi.org/10.1007/s10800-017-1085-y .
Wang, B.; Ryu, J. G.; Choi, S. H.; Song, G. J.; Hong, D. K.; Hwang, C. Y.; Chen, X.; Wang, B.; Li, W.; Song, H. K.; Park, S. J.; Ruoff, R. S . Folding graphene film yields high areal energy storage in lithium-ion batteries . ACS Nano , 2018 . 12 (2 ):1736 -1746. .
Hoshide, T.; Zheng, Y. C.; Hou, J. Y.; Wang, Z. Q.; Li, Q. W.; Zhao, Z. G.; Ma, R. Z.; Sasaki, T.; Geng, F. X . Flexible lithium-ion fiber battery by the regular stacking of two-dimensional titanium oxide nanosheets hybridized with reduced graphene oxide . Nano Lett. , 2017 . 17 (6 ):3543 -3549 . DOI:10.1021/acs.nanolett.7b00623http://doi.org/10.1021/acs.nanolett.7b00623 .
Rao, J. Y.; Liu, N. S.; Zhang, Z.; Su, J.; Li, L. Y.; Xiong, L.; Gao, Y. H . All-fiber-based quasi-solid-state lithium-ion battery towards wearable electronic devices with outstanding flexibility and self-healing ability . Nano Energy , 2018 . 51 425 -433 . DOI:10.1016/j.nanoen.2018.06.067http://doi.org/10.1016/j.nanoen.2018.06.067 .
Pech, D.; Brunet, M.; Durou, H.; Huang, P. H.; Mochalin, V.; Gogotsi, Y.; Taberna, P. L.; Simon, P . Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon . Nat. Nanotechnol. , 2010 . 5 (9 ):651 -654 . DOI:10.1038/nnano.2010.162http://doi.org/10.1038/nnano.2010.162 .
Beidaghi, M.; Wang, C. L . Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance . Adv. Funct. Mater, , 2012 . 22 (21 ):4501 -4510 . DOI:10.1002/adfm.v22.21http://doi.org/10.1002/adfm.v22.21 .
Chen, J.; Li, C.; Shi, G. Q . Graphene materials for electrochemical capacitors . J. Phys. Chem. Lett. , 2013 . 4 (8 ):1244 -1253 . DOI:10.1021/jz400160khttp://doi.org/10.1021/jz400160k .
Huang, L.; Li, C.; Shi, G. Q . High-performance and flexible electrochemical capacitors based on graphene/polymer composite films . J. Mater. Chem. A , 2014 . 2 (4 ):968 -974 . DOI:10.1039/C3TA14511Ehttp://doi.org/10.1039/C3TA14511E .
Hu, Y.; Cheng, H. H.; Zhao, F.; Chen, N.; Jiang, L.; Feng, Z. H.; Qu, L. T . All-in-one graphene fiber supercapacitors . Nanoscale , 2014 . 6 (12 ):6448 -6451 . DOI:10.1039/c4nr01220hhttp://doi.org/10.1039/c4nr01220h .
Zhao, Y.; Han, Q.; Cheng, Z. H.; Jiang, L.; Qu, L. T . Integratedgraphene systems by laser irradiation for advanced deviced . Nano Today , 2017 . 12 14 -30 . DOI:10.1016/j.nantod.2016.12.010http://doi.org/10.1016/j.nantod.2016.12.010 .
Liang, Y.; Wang, Z.; Huang, J.; Cheng, H. H.; Zhao, F.; Hu, Y.; Jiang, L.; Qu, L. T . Series of in-fiber graphene supercapacitors for flexible wearable devices . J. Mater. Chem. A , 2015 . 3 (6 ):2547 -2551 . DOI:10.1039/C4TA06574Chttp://doi.org/10.1039/C4TA06574C .
Li, Z.; Huang, T.; Gao, W.; Xu, Z.; Chang, D.; Zhang, C.; Gao, C . Hydrothermally activated graphene fiber fabrics for textile electrodes of supercapacitors . ACS Nano , 2017 . 11 (11 ):11056 -11065 . DOI:10.1021/acsnano.7b05092http://doi.org/10.1021/acsnano.7b05092 .
Cheng, H. H.; Liu, J.; Zhao, Y.; Hu, C. G.; Zhang, Z. P.; Chen, N.; Jiang, L.; Qu, L. T . Graphene fibers with predetermined deformation as moisture-triggered actuators and robots . Angew. Chem. Int. Ed. , 2013 . 52 (40 ):10482 -10486 . DOI:10.1002/anie.201304358http://doi.org/10.1002/anie.201304358 .
Cheng, H. H.; Hu, Y.; Zhao, F.; Dong, Z. L.; Wang, Y. H.; Chen, N.; Zhang, Z. P.; Qu, L. T . Moisture-activated torsional graphene-fiber motor . Adv. Mater. , 2014 . 26 (18 ):2909 -2913 . DOI:10.1002/adma.v26.18http://doi.org/10.1002/adma.v26.18 .
Conley, H.; Lavrik, N. V.; Prasai, D.; Bolotin, K. I . Graphene bimetallic-like cantilevers: Probing graphene/substrate interactions . Nano Lett. , 2011 . 11 (11 ):4748 -4752 . DOI:10.1021/nl202562uhttp://doi.org/10.1021/nl202562u .
Wang, Y. H.; Bian, K.; Hu, C. G.; Zhang, Z. P.; Chen, N.; Zhang, H. M.; Qu, L. T . Flexible and wearable graphene/polypyrrole fibers towards multifunctional actuator applications . Electrochem. Commun. , 2013 . 35 49 -52 . DOI:10.1016/j.elecom.2013.07.044http://doi.org/10.1016/j.elecom.2013.07.044 .
Xie, X. J.; Qu, L. T.; Zhou, C.; Li, Y.; Bai, H.; Shi, G. Q.; Dai, L. M . An asymmetrically surface-modified graphene film electrochemical actuator . ACS Nano , 2010 . 4 (10 ):6050 -6054 . DOI:10.1021/nn101563xhttp://doi.org/10.1021/nn101563x .
Liang, J. J.; Huang, Y.; Oh, J. Y.; Kozlov, M.; Sui, D.; Fang, S. L.; Baughman, R. H.; Ma, Y. F.; Chen, Y. S . Electromechanical actuators based on graphene and graphene/Fe3O4 hybrid paper . Adv. Funct. Mater. , 2011 . 21 (19 ):3778 -3784 . DOI:10.1002/adfm.201101072http://doi.org/10.1002/adfm.201101072 .
Liu, J.; Wang, Z.; Xie, X. J.; Cheng, H. H.; Zhao, Y.; Qu, L. T . A rationally-designed synergetic polypyrrole/graphene bilayer actuator . J. Mater. Chem. , 2012 . 22 (9 ):4015 -4020 . DOI:10.1039/c2jm15266ehttp://doi.org/10.1039/c2jm15266e .
Huang, Y.; Liang, J. J.; Chen, Y. S . The application of graphene based materials for actuators . J. Mater. Chem. , 2012 . 22 (9 ):3671 -3679 . DOI:10.1039/c2jm15536bhttp://doi.org/10.1039/c2jm15536b .
Zhu, C. H.; Lu, Y.; Peng, J.; Chen, J. F.; Yu, S. H . Photothermally sensitive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels as remote lightcontrolled liquid microvalves . Adv. Funct. Mater. , 2012 . 22 (19 ):4017 -4022 . DOI:10.1002/adfm.v22.19http://doi.org/10.1002/adfm.v22.19 .
Wu, C. Z.; Feng, J.; Peng, L. L.; Ni, Y.; Liang, H. Y.; He, L. H.; Xie, Y . Large-area graphene realizing ultrasensitive photothermal actuator with high transparency: New prototype robotic motions under infrared-light stimuli . J. Mater. Chem. , 2011 . 21 (46 ):18584 -18591 . DOI:10.1039/c1jm13311jhttp://doi.org/10.1039/c1jm13311j .
Zhang, J.; Zhao, F.; Zhang, Z. P.; Chen, N.; Qu, L. T . Dimension-tailored functional graphene structures for energy conversion and storage . Nanoscale , 2013 . 5 (8 ):3112 -3126 . DOI:10.1039/c3nr00011ghttp://doi.org/10.1039/c3nr00011g .
Lu, L. H.; Liu, J. H.; Hu, Y.; Zhang, Y. W.; Chen, W . Graphene-stabilized silver nanoparticle electrochemical electrode for actuator design . Adv. Mater. , 2013 . 25 (9 ):1270 -1274 . DOI:10.1002/adma.v25.9http://doi.org/10.1002/adma.v25.9 .
Liang, J. J.; Huang, L.; Li, N.; Huang, Y.; Wu, Y. P.; Fang, S. L.; Oh, J. Y.; Kozlov, M.; Ma, Y. F.; Li, F. F.; Baughman, R.; Chen, Y. S . Electromechanical actuator with controllable motion, fast response rate, and high-frequency resonance based on graphene and polydiacetylene . ACS Nano , 2012 . 6 (5 ):4508 -4509 . DOI:10.1021/nn3006812http://doi.org/10.1021/nn3006812 .
Cheng, H. H.; Huang, Y. X.; Shi, G. Q.; Jiang, L.; Qu, L. T . Graphene-based functional architectures: Sheets regulation and macrostructure construction toward actuators and power generators . Acc. Chem. Res. , 2017 . 50 (7 ):1663 -1671 . DOI:10.1021/acs.accounts.7b00131http://doi.org/10.1021/acs.accounts.7b00131 .
Liang, Y.; Zhao, F.; Cheng, Z. H.; Zhou, Q. H.; Shao, H. B.; Jiang, L.; Qu, L. T . Self-powered wearable graphene fiber for information expression . Nano Energy , 2017 . 32 329 -335 . DOI:10.1016/j.nanoen.2016.12.062http://doi.org/10.1016/j.nanoen.2016.12.062 .
Yang, Z. B.; Sun, H.; Chen, T.; Qiu, L. B.; Luo, Y. F.; Peng, H. S . Photovoltaic wire derived from a graphene composite fiber achieving an 8.45% energy conversion efficiency . Angew. Chem. Int. Ed. , 2013 . 52 (29 ):7545 -7548. .
Zou, Y. H.; Yang, X. F.; Lv, C. X.; Liu, T. C.; Xia, Y. Z.; Shang, L.; Waterhouse, G. I. N.; Yang, D. J.; Zhang, T. R . Multishelled Ni-rich Li(NixCoyMnz)O2 hollow fibers with low cation mixing as high-performance cathode materials for Li-ion batteries . Adv. Sci. , 2017 . 4 (1 ):1600262 DOI:10.1002/advs.201600262http://doi.org/10.1002/advs.201600262 .
Xu, J.; Chen, Z. Y.; Zhang, H. W.; Lin, G. B.; Wang, X. X.; Long, J. L . Cd3(C3N3S3)2 coordination polymer/graphene nanoarchitectures for enhanced photocatalytic H2O2 production under visible light . Sci. Bull. , 2017 . 62 (9 ):610 -618 . DOI:10.1016/j.scib.2017.04.013http://doi.org/10.1016/j.scib.2017.04.013 .
Shang, L.; Bian, T.; Zhang, B. H.; Zhang, D. H.; Wu, L. Z.; Tung, C. H.; Yin, Y. D.; Zhang, T. R . Graphene-supported ultrafine metal nanoparticles encapsulated by mesoporous silica: Robust catalysts for oxidation and reduction reactions . Angew. Chem. Int. Ed. , 2014 . 53 250 -254 . DOI:10.1002/anie.v53.1http://doi.org/10.1002/anie.v53.1 .
0
浏览量
0
Downloads
6
CSCD
关联资源
相关文章
相关作者
相关机构