1.State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
yangmb@scu.edu.cn
Scan for full text
Da-Wei Shi, Xiang-Ling Lai, Yuan-Ping Jiang, 等. Synthesis of Inorganic Silica Grafted Three-arm PLLA and Their Behaviors for PLA Matrix[J]. Chinese Journal of Polymer Science, 2019,37(3):216-226.
Da-Wei Shi, Xiang-Ling Lai, Yuan-Ping Jiang, et al. Synthesis of Inorganic Silica Grafted Three-arm PLLA and Their Behaviors for PLA Matrix[J]. Chinese Journal of Polymer Science, 2019,37(3):216-226.
Da-Wei Shi, Xiang-Ling Lai, Yuan-Ping Jiang, 等. Synthesis of Inorganic Silica Grafted Three-arm PLLA and Their Behaviors for PLA Matrix[J]. Chinese Journal of Polymer Science, 2019,37(3):216-226. DOI: 10.1007/s10118-019-2191-6.
Da-Wei Shi, Xiang-Ling Lai, Yuan-Ping Jiang, et al. Synthesis of Inorganic Silica Grafted Three-arm PLLA and Their Behaviors for PLA Matrix[J]. Chinese Journal of Polymer Science, 2019,37(3):216-226. DOI: 10.1007/s10118-019-2191-6.
The low melt strength and poor crystallization behavior severely limit the processing and application of poly(lactic acid) (PLA) as biodegradable film materials. In this work, three-arm poly(L-lactic acid) (3A-PLLA) grafted silica nanoparticles with two kinds of topology structures were introduced into PLA matrix to improve the biodegradation performance. Different methods were used to characterize the structure of the grafted 3A-PLLA chains, the grafting density, and the thermal decomposition behavior of the nanoparticles. By varying the mass ratios of raw materials and altering the order of dropping solution in the reaction, high grafting density-tangled 3A-PLLA grafted SiO,2, was synthesized as " 3A-PLLA grafting to SiO,2,” (GTS), while low grafting density-stretched 3A-PLLA grafted SiO,2, was obtained as " SiO,2, grafting to 3A-PLLA” (GTA). Topology of nanoparticles as well as the filler-matrix interaction is critically important to structure bio-nanocomposites with desirable properties. Thus, the GTS and GTA nanoparticles were introduced into PLA matrix to assess the effect. The SEM images showed the uniform dispersion of the modified nanoparticles, while the shear rheology results revealed that GTA nanoparticles made a more significant contribution on the melt-strengthening and relaxation time-extension of PLA. Moreover, it is suggested that GTA nanoparticles were more effective to act as a nucleating agent for PLA, which was proved by differential scanning calorimetry (DSC) and polarized optical microscopy (POM) researches. All of the improvements mentioned above of GTA nanocomposites can be ascribed to stronger entanglements between 3A-PLLA stretched by nano-SiO,2, and PLA matrix.
Poly(lactic acid)NanocompositesSurface graftingTopologyCrystallization
Maharana, T.; Mohanty, B.; Negi, Y. S . Melt-solid polycondensation of lactic acid and its biodegradability . Prog. Polym. Sci. , 2009 . 34 99 -124 . DOI:10.1016/j.progpolymsci.2008.10.001http://doi.org/10.1016/j.progpolymsci.2008.10.001 .
Inkinen, S.; Hakkarainen, M.; Albertsson, A. C.; Södergård, A . From lactic acid to poly(lactic acid) (PLA): Characterization and analysis of PLA and its precursors . Biomacromolecules , 2011 . 12 523 -532 . DOI:10.1021/bm101302thttp://doi.org/10.1021/bm101302t .
Zhang, P.; Hong, Z.; Yu, T.; Chen, X.; Jing, X . In vivo mineralization and osteogenesis of nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with poly(L-lactide) . Biomaterials , 2009 . 30 58 -70 . DOI:10.1016/j.biomaterials.2008.08.041http://doi.org/10.1016/j.biomaterials.2008.08.041 .
Revati, R.; Majid, M. S. A.; Ridzuan, M. M.; Normahira, M.; Nasir, N. F. M.; Rahman, M. N. Y.; Gibson, A. G . Mechanical, thermal and morphological characterisation of 3D porous Pennisetum purpureum/PLA biocomposites scaffold . Mater. Sci. Eng. C-Mater. Biol. Appli. , 2017 . 75 752 -759. .
Al-Itry, R.; Lamnawar, K.; Maazouz, A . Rheological, morphological, and interfacial properties of compatibilized PLA/PBAT blends . Rheol. Acta , 2014 . 53 501 -517 . DOI:10.1007/s00397-014-0774-2http://doi.org/10.1007/s00397-014-0774-2 .
Pinese, C.; Gagnieu, C.; Nottelet, B.; Rondot-Couzin, C.; Hunger, S.; Coudane, J.; Garric, X . In vivo evaluation of hybrid patches composed of PLA based copolymers and collagen/chondroitin sulfate for ligament tissue regeneration . J. Biomed. Mater. Res. B-Appl. Biomater. , 2017 . 105 1778 -1788 . DOI:10.1002/jbm.b.v105.7http://doi.org/10.1002/jbm.b.v105.7 .
Chinsirikul, W.; Rojsatean, J.; Hararak, B.; Kerddonfag, N.; Aontee, A.; Jaieau, K.; Kumsang, P.; Sripethdee, C . Flexible and tough poly(lactic acid) films for packaging applications: Property and processability improvement by effective reactive blending . Packag. Technol. Sci. , 2015 . 28 741 -759 . DOI:10.1002/pts.2141http://doi.org/10.1002/pts.2141 .
Sirisinha, K.; Somboon, W . Melt characteristics, mechanical, and thermal properties of blown film from modified blends of poly(butylene adipate-co-terephthalate) and poly(lactide) . J. Appl. Polym. Sci. , 2012 . 124 4986 -4992 . DOI:10.1002/app.35604http://doi.org/10.1002/app.35604 .
Hua, S.; Chen, F.; Liu, Z. Y.; Yang, W.; Yang, M. B . Preparation of cellulose-graft-polylactic acid via melt copolycondensation for use in polylactic acid based composites: Synthesis, characterization and properties . RSC Adv. , 2016 . 6 1973 -1983 . DOI:10.1039/C5RA23182Ehttp://doi.org/10.1039/C5RA23182E .
Zhang, M.; Thomas, N. L . Blending polylactic acid with polyhydroxybutyrate: The effect on thermal, mechanical, and biodegradation properties . Adv. Polym. Technol. , 2011 . 30 67 -79 . DOI:10.1002/adv.v30.2http://doi.org/10.1002/adv.v30.2 .
Jestin, J.; Cousin, F.; Dubois, I.; Ménager, C.; Schweins, R.; Oberdisse, J.; Boué, F . Anisotropic reinforcement of nanocomposites tuned by magnetic orientation of the filler network . Adv. Mater. , 2008 . 20 2533 -2540 . DOI:10.1002/adma.v20:13http://doi.org/10.1002/adma.v20:13 .
Li, Y.; Sun, X. S . Preparation and characterization of polymer-inorganic nanocomposites by in situ melt polycondensation of L-lactic acid and surface-hydroxylated MgO . Biomacromolecules , 2010 . 11 1847 -1855 . DOI:10.1021/bm100320qhttp://doi.org/10.1021/bm100320q .
Hong, Z.; Qiu, X.; Sun, J.; Deng, M.; Chen, X.; Jing, X . Grafting polymerization of L-lactide on the surface of hydroxyapatite nano-crystals . Polymer , 2004 . 45 6699 -6706 . DOI:10.1016/j.polymer.2004.07.036http://doi.org/10.1016/j.polymer.2004.07.036 .
Jin, T. Y.; Sang, C. L.; Jeong, Y. G . Effects of grafted chain length on mechanical and electrical properties of nanocomposites containing polylactide-grafted carbon nanotubes . Compos. Sci. Technol. , 2010 . 70 776 -782 . DOI:10.1016/j.compscitech.2010.01.011http://doi.org/10.1016/j.compscitech.2010.01.011 .
Chevigny, C.; Dalmas, F.; Cola, E. D.; Gigmes, D.; Bertin, D.; Boué, F.; Jestin, J . Polymer-grafted-nanoparticles nanocomposites: Dispersion, grafted chain conformation, and rheological behavior . Macromolecules , 2011 . 44 122 -133 . DOI:10.1021/ma101332shttp://doi.org/10.1021/ma101332s .
Carrot, G.; Rutot-Houzé, D,; Pottier, A.; Degée, P.; Hilborn, J.; Dubois, P . Surface-initiated ring-opening polymerization: A versatile method for nanoparticle ordering . Macromolecules , 2002 . 35 8400 -8404 . DOI:10.1021/ma020558mhttp://doi.org/10.1021/ma020558m .
Shinoda, H.; Matyjaszewski, K . Structural control of poly(methyl methacrylate)-g-poly(lactic acid) graft copolymers by atom transfer radical polymerization (ATRP) . Macromolecules , 2001 . 34 6243 -6248 . DOI:10.1021/ma0105791http://doi.org/10.1021/ma0105791 .
Perruchot, C.; Khan, M. A.; A. Kamitsi, A.; Armes, S. P.; And, T. V. W.; Patten, T. E . Synthesis of well-defined, polymer-grafted silica particles by aqueous ATRP . Langmuir , 2001 . 17 4479 -4481 . DOI:10.1021/la0102758http://doi.org/10.1021/la0102758 .
Qin, S. H.; Qin, D. Q.; Ford, W. T.; Resasco, D. E.; Herrera, J. E . Functionalization of single-walled carbon nanotubes with polystyrene via grafting to and grafting from methods . Macromolecules , 2004 . 37 752 -757 . DOI:10.1021/ma035214qhttp://doi.org/10.1021/ma035214q .
Chen, G. X.; Kim, H. S.; Park, B. H.; Yoon, J. S . Controlled functionalization of multiwalled carbon nanotubes with various molecular-weight poly(L-lactic acid) . J. Phys. Chem. B , 2005 . 109 22237 -22243 . DOI:10.1021/jp054768nhttp://doi.org/10.1021/jp054768n .
Wu, F.; Lan, X. R.; Ji, D. Y.; Liu, Z. Y.; Yang, W.; Yang, M. B . Grafting polymerization of polylactic acid on the surface of nano-SiO2 and properties of PLA/PLA-grafted-SiO2 nanocomposites . J. Appl. Polym. Sci. , 2013 . 129 3019 -3027 . DOI:10.1002/app.38585http://doi.org/10.1002/app.38585 .
Wu, F.; Zhang, B.; Yang, W.; Liu, Z. Y.; Yang, M. B . Inorganic silica functionalized with PLLA chains via grafting methods to enhance the melt strength of PLLA/silica nanocomposites . Polymer , 2014 . 55 5760 -5772 . DOI:10.1016/j.polymer.2014.08.070http://doi.org/10.1016/j.polymer.2014.08.070 .
Kim, E. S.; Kim, B. C.; Kim, S. H . Structural effect of linear and star-shaped poly(L-lactic acid) on physical properties . J. Polym. Sci., Part B: Polym. Phys. , 2004 . 42 939 -946 . DOI:10.1002/(ISSN)1099-0488http://doi.org/10.1002/(ISSN)1099-0488 .
Zhou, M.; Zhou, P.; Xiong, P.; Qian, X.; Zheng, H . Crystallization, rheology and foam morphology of branched PLA prepared by novel type of chain extender . Macromol. Res. , 2015 . 23 231 -236 . DOI:10.1007/s13233-015-3018-0http://doi.org/10.1007/s13233-015-3018-0 .
Xu, H.; Fang, H.; Bai, J.; Zhang, Y.; Wang, Z . Preparation and characterization of high-melt-strength polylactide with long-chain branched structure through γ-radiation-induced chemical reactions . Ind. Eng. Chem. Res. , 2014 . 53 1150 -1159 . DOI:10.1021/ie403669ahttp://doi.org/10.1021/ie403669a .
Mannion, A. M.; Bates, F. S.; Macosko, C. W . Synthesis and rheology of branched multiblock polymers based on polylactide . Macromolecules , 2016 . 49 4587 -4598 . DOI:10.1021/acs.macromol.6b00792http://doi.org/10.1021/acs.macromol.6b00792 .
Fan, Y. J.; Nishida, H.; Shirai, Y.; Endo, T . Thermal stability of poly(L-lactide): Influence of end protection by acetyl group . Polym. Degrad. Stab. , 2004 . 84 143 -149 . DOI:10.1016/j.polymdegradstab.2003.10.004http://doi.org/10.1016/j.polymdegradstab.2003.10.004 .
Wang, L.; Jing, X.; Cheng, H.; Hu, X.; Yang, L.; Huang, Y . Rheology and crystallization of long-chain branched poly(L-lactide)s with controlled branch length . Ind. Eng. Chem. Res. , 2012 . 51 10731 -10741 . DOI:10.1021/ie300524jhttp://doi.org/10.1021/ie300524j .
George, K. A.; Schue, F.; Chirila, T. V.; Wentrup-Byrne, E . Synthesis of four-arm star poly(L-lactide) oligomers using an in situ-generated calcium-based initiator . J. Polym. Sci., Part A: Polym. Chem. , 2009 . 47 4736 -4748 . DOI:10.1002/pola.v47:18http://doi.org/10.1002/pola.v47:18 .
Lu, X.; Lv, X.; Sun, Z.; Zheng, Y . Nanocomposites of poly(L-lactide) and surface-grafted TiO2 nanoparticles: Synthesis and characterization . Eur. Polym. J. , 2008 . 44 2476 -2481 . DOI:10.1016/j.eurpolymj.2008.06.002http://doi.org/10.1016/j.eurpolymj.2008.06.002 .
Kim, S. H.; Han, Y. K.; Kim, Y. H.; Hong, S. I . Multifunctional initiation of lactide polymerization by stannous octoate pentaerythritol . Makromol. Chem. , 1992 . 193 1623 -1631 . DOI:10.1002/macp.1992.021930706http://doi.org/10.1002/macp.1992.021930706 .
Zhang, C. X.; Wang, B.; Chen, Y.; Cheng, F.; Jiang, S. C . Amphiphilic multiarm star polylactide with hyperbranched polyethylenimine as core: A systematic reinvestigation . Polymer , 2012 . 53 3900 -3909 . DOI:10.1016/j.polymer.2012.07.002http://doi.org/10.1016/j.polymer.2012.07.002 .
Shi, W. P.; Zhao, C. Y.; Li, S. M.; Fan, Z. Y . Synthesis of tri-arm PLLA-PDLA block copolymers and its stereocomplex crystallization behavior . Chem. J. Chin. Univ.-Chin. , 2012 . 33 2092 -2098 . DOI:10.3969/j.issn.0251-0790.2012.09.038http://doi.org/10.3969/j.issn.0251-0790.2012.09.038 .
Dorgan, J. R.; Williams, J. S.; Lewis, D. N . Melt rheology of poly(lactic acid): Entanglement and chain architecture effects . J. Rheol. , 1999 . 43 1141 -1155 . DOI:10.1122/1.551041http://doi.org/10.1122/1.551041 .
Hong, Z. K.; Zhang, P. B.; He, C. L.; Qiu, X. Y.; Liu, A. X.; Chen, L.; Chen, X. S.; Jing, X. B . Nano-composite of poly(L-lactide) and surface grafted hydroxyapatite: Mechanical properties and biocompatibility . Biomaterials , 2005 . 26 6296 -6304 . DOI:10.1016/j.biomaterials.2005.04.018http://doi.org/10.1016/j.biomaterials.2005.04.018 .
Zou, J.; Ma, T.; Zhang, J.; He, W.; Huang, F . Preparation and characterization of PLLA-ESO/surface-grafted silica nanocomposites . Polym. Bull. , 2011 . 67 1261 -1271 . DOI:10.1007/s00289-011-0485-0http://doi.org/10.1007/s00289-011-0485-0 .
Luo, Y. B.; Wang, X. L.; Xu, D.Y.; Wang, Y. Z . Preparation and characterization of poly(lactic acid)-grafted TiO2 nanoparticles with improved dispersions . Appl. Surf. Sci. , 2009 . 255 6795 -6801 . DOI:10.1016/j.apsusc.2009.02.074http://doi.org/10.1016/j.apsusc.2009.02.074 .
Balazs, A. C.; Emrick, T.; Russell, T. P . Nanoparticle polymer composites: Where two small worlds meet . Science , 2006 . 314 1107 -1110 . DOI:10.1126/science.1130557http://doi.org/10.1126/science.1130557 .
Jordan, J.; Jacob, K. I.; Tannenbaum, R.; Sharaf, M. A.; Jasiuk, I . Experimental trends in polymer nanocomposites - a review . Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. , 2005 . 393 1 -11 . DOI:10.1016/j.msea.2004.09.044http://doi.org/10.1016/j.msea.2004.09.044 .
Li, H. B.; Huneault, M. A . Effect of nucleation and plasticization on the crystallization of poly(lactic acid) . Polymer , 2007 . 48 6855 -6866 . DOI:10.1016/j.polymer.2007.09.020http://doi.org/10.1016/j.polymer.2007.09.020 .
Nofar, M.; Zhu, W. L.; Park, C. B.; Randall, J . Crystallization kinetics of linear and long-chain-branched polylactide . Ind. Eng. Chem. Res. , 2011 . 50 13789 -13798. .
0
浏览量
0
Downloads
3
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621