a.College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
b.Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
shaobingzhou@swjtu.cn
Scan for full text
Hong-Mei Chen, Lin Wang, Shao-Bing Zhou. Recent Progress in Shape Memory Polymers for Biomedical Applications[J]. Chinese Journal of Polymer Science, 2018,36(8):905-917.
Hong-Mei Chen, Lin Wang, Shao-Bing Zhou. Recent Progress in Shape Memory Polymers for Biomedical Applications[J]. Chinese Journal of Polymer Science, 2018,36(8):905-917.
Hong-Mei Chen, Lin Wang, Shao-Bing Zhou. Recent Progress in Shape Memory Polymers for Biomedical Applications[J]. Chinese Journal of Polymer Science, 2018,36(8):905-917. DOI: 10.1007/s10118-018-2118-7.
Hong-Mei Chen, Lin Wang, Shao-Bing Zhou. Recent Progress in Shape Memory Polymers for Biomedical Applications[J]. Chinese Journal of Polymer Science, 2018,36(8):905-917. DOI: 10.1007/s10118-018-2118-7.
Shape memory polymers (SMPs) as one type of the most important smart materials have attracted increasing attention due to their promising application in the field of biomedicine, textiles, aerospace ,et al,. Following a brief intoduction of the conception and classification of SMPs, this review is focused on the progress of shape memory polymers for biomedical applications. The progress includes the early researches based on thermo-induced SMPs, the improvement of the stimulus, the development of shape recovery ways and the expansion of the applications in biomedical field. In addition, future perspectives of SMPs in the field of biomedicine are also discussed.
Shape memory polymersBiomedicical applicationBiodegradable
Zhao, Q.; Qi, H. J.; Xie, T . Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding . Prog. Polym. Sci. , 2015 . 49 79 -120 . DOI:10.1016/j.progpolymsci.2015.04.001http://doi.org/10.1016/j.progpolymsci.2015.04.001 .
Mather, P. T.; Luo, X.; Rousseau, I. A . Shape memory polymer research . Annu. Rev. Mater. Res. , 2009 . 39 445 -471 . DOI:10.1146/annurev-matsci-082908-145419http://doi.org/10.1146/annurev-matsci-082908-145419 .
Hu, J.; Zhu, Y.; Huang, H.; Lu, J . Recent advances in shape-memory polymers: structure, mechanism, functionality, modeling and applications . Prog. Polym. Sci. , 2012 . 37 (12 ):1720 -1763 . DOI:10.1016/j.progpolymsci.2012.06.001http://doi.org/10.1016/j.progpolymsci.2012.06.001 .
Hager, M. D.; Bode, S.; Weber, C.; Schubert, U. S . Shape memory polymers: Past, present and future developments . Prog. Polym. Sci. , 2015 . 49-50 3 -33 . DOI:10.1016/j.progpolymsci.2015.04.002http://doi.org/10.1016/j.progpolymsci.2015.04.002 .
Liu, C.; Qin, H.; Mather, P . Review of progress in shape-memory polymers . J. Mater. Chem. , 2007 . 17 (16 ):1543 -1558 . DOI:10.1039/b615954khttp://doi.org/10.1039/b615954k .
Xie, T.; Xiao, X.; Cheng, Y. T . Revealing triple-shape memory effect by polymer bilayers . Macromol. Rapid Commun. , 2009 . 30 (21 ):1823 -1827 . DOI:10.1002/marc.v30:21http://doi.org/10.1002/marc.v30:21 .
Chen, S.; Hu, J.; Zhuo, H.; Zhu, Y . Two-way shape memory effect in polymer laminates . Mater. Lett. , 2008 . 62 (25 ):4088 -4090 . DOI:10.1016/j.matlet.2008.05.073http://doi.org/10.1016/j.matlet.2008.05.073 .
Herbert, K. M.; Schrettl, S.; Rowan, S. J.; Weder, C . 50th Anniversary perspective: solid-state multistimuli, multiresponsive polymeric materials . Macromolecules , 2017 . 50 (22 ):8845 -8870 . DOI:10.1021/acs.macromol.7b01607http://doi.org/10.1021/acs.macromol.7b01607 .
Lendlein, A.; Langer, R . Biodegradable, elastic shape-memory polymers for potential biomedical applications . Science , 2002 . 296 (5573 ):1673 -1676 . DOI:10.1126/science.1066102http://doi.org/10.1126/science.1066102 .
Lendlein, A.; Schmidt, A. M.; Schroeter, M.; Langer, R . Shape-memory polymer networks from oligo (ε-caprolactone) dimethacrylates . J. Polym. Sci., Part A: Polym. Chem. , 2005 . 43 (7 ):1369 -1381 . DOI:10.1002/(ISSN)1099-0518http://doi.org/10.1002/(ISSN)1099-0518 .
Ping, P.; Wang, W.; Chen, X.; Jing, X . Poly (ε-caprolactone) polyurethane and its shape-memory property . Biomacromolecules , 2005 . 6 (2 ):587 -592 . DOI:10.1021/bm049477jhttp://doi.org/10.1021/bm049477j .
Zhang, Z. X.; Liao, F.; He, Z. Z.; Yang, J. H.; Huang, T.; Zhang, N.; Wang, Y.; Gao, X. L . Tunable shape memory behaviors of poly(ethylene vinyl acetate) achieved by adding poly(L-lactide) . Smart Mater. Struct. , 2015 . 24 (12 ):125002 DOI:10.1088/0964-1726/24/12/125002http://doi.org/10.1088/0964-1726/24/12/125002 .
Liu, Y.; Lv, H.; Lan, X.; Leng, J.; Du, S . Review of electro-active shape-memory polymer composite . Compos. Sci. Technol. , 2009 . 69 (13 ):2064 -2068 . DOI:10.1016/j.compscitech.2008.08.016http://doi.org/10.1016/j.compscitech.2008.08.016 .
Wang, W. X.; Liu, D.; Lu, L.; Chen, H.; Gong, T.; Lu, J.; Zhou, S . The improvement of shape memory function of poly(ε-caprolactone)/nano-crystalline cellulose nanocomposite via the recrystallization under a high-pressure environment . J. Mater. Chem. A , 2016 . 4 (16 ):5984 -5992 . DOI:10.1039/C6TA00930Ahttp://doi.org/10.1039/C6TA00930A .
Zhang, S.; Yu, Z.; Govender, T.; Luo, H.; Li, B . A novel supramolecular shape memory material based on partial α-CD-PEG inclusion complex . Polymer , 2008 . 49 (15 ):3205 -3210 . DOI:10.1016/j.polymer.2008.05.030http://doi.org/10.1016/j.polymer.2008.05.030 .
Zheng, X.; Zhou, S.; Li, X.; Weng, J . Shape memory properties of poly(D,L-lactide)/hydroxyapatite composites . Biomaterials , 2006 . 27 (24 ):4288 -4295 . DOI:10.1016/j.biomaterials.2006.03.043http://doi.org/10.1016/j.biomaterials.2006.03.043 .
Zheng, X.; Zhou, S.; Yu, X.; Li, X.; Feng, B.; Qu, S.; Weng, J . Effect of In vitro degradation of poly(D, L-lactide)/β-tricalcium composite on its shape-memory properties . J. Biomed. Mater. Res. B , 2008 . 86 (1 ):170 -180. .
Li, Y.; Chen, H.; Liu, D.; Wang, W.; Liu, Y.; Zhou, S . pH-Responsive shape memory poly(ethylene glycol)-poly(epsilon-caprolactone)-based polyurethane/ cellulose nanocrystals nanocomposite . ACS Appl. Mater. Interfaces , 2015 . 7 (23 ):12988 -12999 . DOI:10.1021/acsami.5b02940http://doi.org/10.1021/acsami.5b02940 .
Xiao, Y.; Zhou, S.; Wang, L.; Zheng, X.; Gong, T . Crosslinked poly(ε-caprolactone)/poly(sebacic anhydride) composites combining biodegradation, controlled drug release and shape memory effect . Compos. Part B-Eng. , 2010 . 41 (7 ):537 -542 . DOI:10.1016/j.compositesb.2010.07.001http://doi.org/10.1016/j.compositesb.2010.07.001 .
Li, W.; Gong, T.; Chen, H.; Wang, L.; Li, J.; Zhou, S . Tuning surface micropattern features using a shape memory functional polymer . RSC Adv. , 2013 . 3 (25 ):9865 -9874 . DOI:10.1039/c3ra41217bhttp://doi.org/10.1039/c3ra41217b .
Yu, X.; Wang, L.; Huang, M.; Gong, T.; Li, W.; Cao, Y.; Ji, D.; Wang, P.; Wang, J.; Zhou, S . A shape memory stent of poly(ε-caprolactone-co-DL-lactide) copolymer for potential treatment of esophageal stenosis . J. Mater. Sci-Mater. M , 2012 . 23 (2 ):581 -589 . DOI:10.1007/s10856-011-4475-4http://doi.org/10.1007/s10856-011-4475-4 .
Gong, T.; Zhao, K.; Yang, G.; Li, J.; Chen, H.; Chen, Y.; Zhou, S . The control of mesenchymal stem cell differentiation using dynamically tunable surface microgrooves . Adv. Healthc. Mater. , 2014 . 3 (10 ):1608 -1619 . DOI:10.1002/adhm.v3.10http://doi.org/10.1002/adhm.v3.10 .
Wang, L.; Di, S.; Wang, W.; Chen, H.; Yang, X.; Gong, T.; Zhou, S . Tunable temperature memory effect of photo-cross-linked star PCL-PEG networks . Macromolecules , 2014 . 47 (5 ):1828 -1836 . DOI:10.1021/ma4023229http://doi.org/10.1021/ma4023229 .
Gong, T.; Zhao, K.; Wang, W.; Chen, H.; Wang, L.; Zhou, S . Thermally activated reversible shape switch of polymer particles . J. Mater. Chem. B , 2014 . 2 (39 ):6855 -6866 . DOI:10.1039/C4TB01155Dhttp://doi.org/10.1039/C4TB01155D .
Wang, L.; Yang, X.; Chen, H.; Gong, T.; Li, W.; Yang, G.; Zhou, S . Design of triple-shape memory polyurethane with photo-cross-linking of cinnamon groups . ACS Appl. Mater. Interfaces , 2013 . 5 (21 ):10520 -105208 . DOI:10.1021/am402091mhttp://doi.org/10.1021/am402091m .
Yang, X.; Wang, L.; Wang, W.; Chen, H.; Yang, G.; Zhou, S . Triple shape memory effect of star-shaped polyurethane . ACS Appl. Mater. Interfaces , 2014 . 6 (9 ):6545 -54 . DOI:10.1021/am5001344http://doi.org/10.1021/am5001344 .
Wang, L.; Yang, X.; Chen, H.; Yang, G.; Gong, T.; Li, W.; Zhou, S . Multi-stimuli sensitive shape memory poly(vinyl alcohol)-graft-polyurethane . Polym. Chem. , 2013 . 4 (16 ):4461 -4468 . DOI:10.1039/c3py00519dhttp://doi.org/10.1039/c3py00519d .
Chen, H.; Li, Y.; Liu, Y.; Gong, T.; Wang, L.; Zhou, S . Highly pH-sensitive polyurethane exhibiting shape memory and drug release . Polym. Chem. , 2014 . 5 (17 ):5168 DOI:10.1039/C4PY00474Dhttp://doi.org/10.1039/C4PY00474D .
Zhou, S.; Zheng, X.; Yu, X.; Wang, J.; Weng, J.; Li, X.; Feng, B.; Yin, M . Hydrogen bonding interaction of poly(D,L-lactide)/hydroxyapatite nanocomposites . Chem. Mater. , 2007 . 19 (2 ):247 -253 . DOI:10.1021/cm0619398http://doi.org/10.1021/cm0619398 .
Chen, H.; Liu, Y.; Gong, T.; Wang, L.; Zhao, K.; Zhou, S . Use of intermolecular hydrogen bonding to synthesize triple-shape memory supermolecular composites . RSC Adv. , 2013 . 3 (19 ):7048 DOI:10.1039/c3ra00091ehttp://doi.org/10.1039/c3ra00091e .
Zimkowski, M. M.; Rentschler, M. E.; Schoen, J.; Rech, B. A.; Mandava, N.; Shandas, R . Integrating a novel shape memory polymer into surgical meshes decreases placement time in laparoscopic surgery: an in vitro and acute in vivo study . J. Biomed. Mater. Res. A , 2013 . 101 (9 ):2613 -20. .
Musial-Kulik, M.; Kasperczyk, J.; Smola, A.; Dobrzynski, P . Double layer paclitaxel delivery systems based on bioresorbable terpolymer with shape memory properties . Int. J. Pharm. , 2014 . 465 (1-2 ):291 -298 . DOI:10.1016/j.ijpharm.2014.01.029http://doi.org/10.1016/j.ijpharm.2014.01.029 .
Yu, X.; Wang, L.; Huang, M.; Gong, T.; Li, W.; Cao, Y.; Ji, D.; Wang, P.; Wang, J.; Zhou, S . A shape memory stent of poly(epsilon-caprolactone-co-DL-lactide) copolymer for potential treatment of esophageal stenosis . J. Mater. Sci. Mater. Med. , 2012 . 23 (2 ):581 -589 . DOI:10.1007/s10856-011-4475-4http://doi.org/10.1007/s10856-011-4475-4 .
Huang, W. M.; Yang, B.; Zhao, Y.; Ding, Z . Thermo-moisture responsive polyurethane shape-memory polymer and composites: a review . J. Mater. Chem. , 2010 . 20 (17 ):3367 DOI:10.1039/b922943dhttp://doi.org/10.1039/b922943d .
Yang, B.; Huang, W. M.; Li, C.; Li, L . Effects of moisture on the thermomechanical properties of a polyurethane shape memory polymer . Polymer , 2006 . 47 (4 ):1348 -1356 . DOI:10.1016/j.polymer.2005.12.051http://doi.org/10.1016/j.polymer.2005.12.051 .
Chen, S.; Hu, J.; Yuen, C. W.; Chan, L . Novel moisture-sensitive shape memory polyurethanes containing pyridine moieties . Polymer , 2009 . 50 (19 ):4424 -4428 . DOI:10.1016/j.polymer.2009.07.031http://doi.org/10.1016/j.polymer.2009.07.031 .
Huang, W. M.; Yang, B.; An, L.; Li, C.; Chan, Y. S . Water-driven programmable polyurethane shape memory polymer: Demonstration and mechanism . Appl. Phys. Lett. , 2005 . 86 (11 ):114105 DOI:10.1063/1.1880448http://doi.org/10.1063/1.1880448 .
Chen, H.; Li, Y.; Tao, G.; Wang, L.; Zhou, S . Thermo- and water-induced shape memory poly(vinyl alcohol) supramolecular networks crosslinked by self-complementary quadruple hydrogen bonding . Polym. Chem. , 2016 . 7 (43 ):6637 -6644 . DOI:10.1039/C6PY01302Chttp://doi.org/10.1039/C6PY01302C .
Du, H.; Zhang, J . Solvent induced shape recovery of shape memory polymer based on chemically cross-linked poly(vinyl alcohol) . Soft Matter , 2010 . 6 (14 ):3370 DOI:10.1039/b922220khttp://doi.org/10.1039/b922220k .
Mendez, J.; Annamalai, P. K.; Eichhorn, S. J.; Rusli, R.; Rowan, S. J.; Foster, E. J.; Weder, C . Bioinspired mechanically adaptive polymer nanocomposites with water-activated shape-memory effect . Macromolecules , 2011 . 44 (17 ):6827 -6835 . DOI:10.1021/ma201502khttp://doi.org/10.1021/ma201502k .
Liu, Y.; Li, Y.; Chen, H.; Yang, G.; Zheng, X.; Zhou, S . Water-induced shape-memory poly(D,L-lactide)/ microcrystalline cellulose composites . Carbohydr. Polym. , 2014 . 104 101 -108 . DOI:10.1016/j.carbpol.2014.01.031http://doi.org/10.1016/j.carbpol.2014.01.031 .
Fleige, E.; Quadir, M. A.; Haag, R . Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications . Adv. Drug Deliver. Rev. , 2012 . 64 (9 ):866 -884 . DOI:10.1016/j.addr.2012.01.020http://doi.org/10.1016/j.addr.2012.01.020 .
Han, X. J.; Dong, Z. Q.; Fan, M. M.; Liu, Y.; li, J. H.; Wang, Y. F.; Yuan, Q. J.; Li, B. J.; Zhang, S . pH-Induced shape-memory polymers . Macromol. Rapid Commun. , 2012 . 33 (12 ):1055 -1060 . DOI:10.1002/marc.201200153http://doi.org/10.1002/marc.201200153 .
Song, Q.; Chen, H.; Zhou, S.; Zhao, K.; Wang, B.; Hu, P . Thermo- and pH-sensitive shape memory polyurethane containing carboxyl groups . Polym. Chem. , 2016 . 7 (9 ):1739 -1746 . DOI:10.1039/C5PY02010Ghttp://doi.org/10.1039/C5PY02010G .
Guo, W.; Lu, C. H.; Orbach, R.; Wang, F.; Qi, X. J.; Cecconello, A.; Seliktar, D.; Willner, I . pH-Stimulated DNA hydrogels exhibiting shape-memory properties . Adv. Mater. , 2015 . 27 (1 ):73 -78 . DOI:10.1002/adma.v27.1http://doi.org/10.1002/adma.v27.1 .
Mohr, R.; Kratz, K.; Weigel, T.; Lucka-Gabor, M.; Moneke, M.; Lendlein, A . Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers . Proc. Natl. Acad. Sci. U. S. A. , 2006 . 103 (10 ):3540 -3545 . DOI:10.1073/pnas.0600079103http://doi.org/10.1073/pnas.0600079103 .
Xiao, Y.; Zhou, S.; Wang, L.; Gong, T . Electro-active shape memory properties of poly(ε-caprolactone)/ functionalized multiwalled carbon nanotube nanocomposite . ACS Appl. Mater. Interfaces , 2010 . 2 (12 ):3506 -3514 . DOI:10.1021/am100692nhttp://doi.org/10.1021/am100692n .
Gong, T.; Li, W.; Chen, H.; Wang, L.; Shao, S.; Zhou, S . Remotely actuated shape memory effect of electrospun composite nanofibers . Acta Biomater. , 2012 . 8 (3 ):1248 -1259 . DOI:10.1016/j.actbio.2011.12.006http://doi.org/10.1016/j.actbio.2011.12.006 .
Zheng, X.; Zhou, S.; Xiao, Y.; Yu, X.; Li, X.; Wu, P . Shape memory effect of poly(D,L-lactide)/Fe3O4 nanocomposites by inductive heating of magnetite particles . Colloid. Surfaces B , 2009 . 71 (1 ):67 -72 . DOI:10.1016/j.colsurfb.2009.01.009http://doi.org/10.1016/j.colsurfb.2009.01.009 .
Jiang, H.; Kelch, S.; Lendlein, A . Polymers move in response to light . Adv. Mater. , 2006 . 18 (11 ):1471 -1475 . DOI:10.1002/(ISSN)1521-4095http://doi.org/10.1002/(ISSN)1521-4095 .
Lendlein, A.; Jiang, H.; Jünger, O.; Langer, R . Light-induced shape-memory polymers . Nature , 2005 . 434 (7035 ):879 -882 . DOI:10.1038/nature03496http://doi.org/10.1038/nature03496 .
Ikeda, T.; Nakano, M.; Yu, Y.; Tsutsumi, O.; Kanazawa, A . Anisotropic bending and unbending behavior of azobenzene liquid‐crystalline gels by light exposure . Adv. Mater. , 2003 . 15 (3 ):201 -205 . DOI:10.1002/adma.200390045http://doi.org/10.1002/adma.200390045 .
Irie, M.; Kunwatchakun, D . Photoresponsive polymers. 8. Reversible photostimulated dilation of polyacrylamide gels having triphenylmethane leuco derivatives. . Macromolecules , 1986 . 19 (10 ):2476 -2480 . DOI:10.1021/ma00164a003http://doi.org/10.1021/ma00164a003 .
Wu, L.; Jin, C.; Sun, X . Synthesis, properties, and light-induced shape memory effect of multiblock polyesterurethanes containing biodegradable segments and pendant cinnamamide groups . Biomacromolecules , 2010 . 12 (1 ):235 -241. .
Behl, M.; Lendlein, A . Triple-shape polymers . J. Mater. Chem. , 2010 . 20 (17 ):3335 DOI:10.1039/b922992bhttp://doi.org/10.1039/b922992b .
Xie, T . Tunable polymer multi-shape memory effect . Nature , 2010 . 464 (7286 ):267 -270 . DOI:10.1038/nature08863http://doi.org/10.1038/nature08863 .
Bellin, I.; Kelch, S.; Langer, R.; Lendlein, A . Polymeric triple-shape materials . Proc. Natl. Acad. Sci. U. S. A. , 2006 . 103 (48 ):18043 -18047 . DOI:10.1073/pnas.0608586103http://doi.org/10.1073/pnas.0608586103 .
Zotzmann, J.; Behl, M.; Feng, Y.; Lendlein, A . Copolymer Networks based on poly(ω-pentadecalactone) and poly(ε-caprolactone) segments as a versatile triple-shape polymer system . Adv. Funct. Mater. , 2010 . 20 (20 ):3583 -3594 . DOI:10.1002/adfm.v20:20http://doi.org/10.1002/adfm.v20:20 .
Luo, X.; Mather, P. T . Triple-shape polymeric composites (TSPCs) . Adv. Funct. Mater. , 2010 . 20 (16 ):2649 -2656 . DOI:10.1002/adfm.201000052http://doi.org/10.1002/adfm.201000052 .
Song, S.; Feng, J.; Wu, P . A new strategy to prepare polymer-based shape memory elastomers . Macromol. Rapid Commun. , 2011 . 32 (19 ):1569 -1575 . DOI:10.1002/marc.v32.19http://doi.org/10.1002/marc.v32.19 .
Xie, T.; Xiao, X.; Cheng, Y. T . Revealing triple-shape memory effect by polymer bilayers . Macromol. Rapid Commun. , 2009 . 30 (21 ):1823 -1827 . DOI:10.1002/marc.v30:21http://doi.org/10.1002/marc.v30:21 .
Ahn, S. K.; Kasi, R. M . Exploiting microphase-separated morphologies of side-chain liquid crystalline polymer networks for triple shape memory properties . Adv. Funct. Mater. , 2011 . 21 (23 ):4543 -4549 . DOI:10.1002/adfm.v21.23http://doi.org/10.1002/adfm.v21.23 .
Li, J.; Xie, T . Significant impact of thermo-mechanical conditions on polymer triple-shape memory effect . Macromolecules , 2011 . 44 (1 ):175 -180 . DOI:10.1021/ma102279yhttp://doi.org/10.1021/ma102279y .
Luo, Y.; Guo, Y.; Gao, X.; Li, B. G.; Xie, T . A general approach towards thermoplastic multishape-memory polymers via sequence structure design . Adv. Mater. , 2013 . 25 (5 ):743 -748 . DOI:10.1002/adma.201202884http://doi.org/10.1002/adma.201202884 .
Behl, M.; Kratz, K.; Zotzmann, J.; Nochel, U.; Lendlein, A . Reversible bidirectional shape-memory polymers . Adv. Mater. , 2013 . 25 (32 ):4466 -4469 . DOI:10.1002/adma.v25.32http://doi.org/10.1002/adma.v25.32 .
Pandini, S.; Passera, S.; Messori, M.; Paderni, K.; Toselli, M.; Gianoncelli, A.; Bontempi, E.; Riccò, T . Two-way reversible shape memory behaviour of crosslinked poly(ε-caprolactone) . Polymer , 2012 . 53 (9 ):1915 -1924 . DOI:10.1016/j.polymer.2012.02.053http://doi.org/10.1016/j.polymer.2012.02.053 .
Zhou, J.; Turner, S. A.; Brosnan, S. M.; Li, Q.; Carrillo, J.M. Y.; Nykypanchuk, D.; Gang, O.; Ashby, V. S.; Dobrynin, A. V.; Sheiko, S. S . Shapeshifting: reversible shape memory in semicrystalline elastomers . Macromolecules , 2014 . 47 (5 ):1768 -1776 . DOI:10.1021/ma4023185http://doi.org/10.1021/ma4023185 .
Kumpfer, J. R.; Rowan, S. J . Thermo-, photo-, and chemo-responsive shape-memory properties from photo-cross-linked metallo-supramolecular polymers . J. Am. Chem. Soc. , 2011 . 133 (32 ):12866 -12874 . DOI:10.1021/ja205332whttp://doi.org/10.1021/ja205332w .
Zhang, Y.; Jiang, X.; Wu, R.; Wang, W . Multi-stimuli responsive shape memory polymers synthesized by using reaction-induced phase separation . J. Appl. Polym. Sci. , 2016 . 133 43534 .
Choi, N. Y.; Kelch, S.; Lendlein, A . Synthesis, Shape-memory functionality and hydrolytical degradation studies on polymer networks from poly(rac-lactide)-b-poly(propylene oxide)-b-poly(rac-lactide) dimethacrylates . Adv. Eng. Mater. , 2006 . 8 (5 ):439 -445 . DOI:10.1002/(ISSN)1527-2648http://doi.org/10.1002/(ISSN)1527-2648 .
Kelch, S.; Steuer, S.; Schmidt, A. M.; Lendlein, A . Shape-memory polymer networks from oligo [(ε-hydroxycaproate)-co-glycolate] dimethacrylates and butyl acrylate with adjustable hydrolytic degradation rate . Biomacromolecules , 2007 . 8 (3 ):1018 -1027 . DOI:10.1021/bm0610370http://doi.org/10.1021/bm0610370 .
Lu, H.; Huang, W. M . Synergistic effect of self-assembled carboxylic acid-functionalized carbon nanotubes and carbon fiber for improved electro-activated polymeric shape-memory nanocomposite . Appl. Phys. Lett. , 2013 . 102 (23 ):231910 DOI:10.1063/1.4811134http://doi.org/10.1063/1.4811134 .
Lu, H.; Gou, J . Study on 3-D high conductive graphene buckypaper for electrical actuation of shape memory polymer . Nanosci. Nanotech. Lett. , 2012 . 4 (12 ):1155 -1159 . DOI:10.1166/nnl.2012.1455http://doi.org/10.1166/nnl.2012.1455 .
Lu, H.; Bai, P.; Yin, W.; Liang, F.; Gou, J . Magnetically aligned carbon nanotubes in nanopaper for electro-activated shape-memory nanocomposites . Nanosci. Nanotech. Lett. , 2013 . 5 (7 ):732 -736 . DOI:10.1166/nnl.2013.1611http://doi.org/10.1166/nnl.2013.1611 .
Heuwers, B.; Beckel, A.; Krieger, A.; Katzenberg, F.; Tiller, J. C . Shape-memory natural rubber: an exceptional material for strain and energy storage . Macromol. Chem. Phys. , 2013 . 214 (8 ):912 -923 . DOI:10.1002/macp.v214.8http://doi.org/10.1002/macp.v214.8 .
Anthamatten, M.; Roddecha, S.; Li, J . Energy storage capacity of shape-memory polymers . Macromolecules , 2013 . 46 (10 ):4230 -4234 . DOI:10.1021/ma400742ghttp://doi.org/10.1021/ma400742g .
Liu, L.; Shen, B.; Jiang, D.; Guo, R.; Kong, L.; Yan, X . Watchband-like supercapacitors with body temperature inducible shape memory Ability . Adv. Energy Mater. , 2016 . 6 1600763 DOI:10.1002/aenm.201600763http://doi.org/10.1002/aenm.201600763 .
Habault, D.; Zhang, H.; Zhao, Y . Light-triggered self-healing and shape-memory polymers . Chem. Soc. Rev. , 2013 . 42 (17 ):7244 -7256 . DOI:10.1039/c3cs35489jhttp://doi.org/10.1039/c3cs35489j .
Wang, L.; Wang, W.; Di, S.; Yang, X.; Chen, H.; Gong, T.; Zhou, S . Silver-coordination polymer network combining antibacterial action and shape memory capabilities . RSC Adv. , 2014 . 4 (61 ):32276 -32282 . DOI:10.1039/C4RA03829Khttp://doi.org/10.1039/C4RA03829K .
Xiao, X.; Xie, T.; Cheng, Y. T . Self-healable graphene polymer composites . J. Mater. Chem. , 2010 . 20 (17 ):3508 -3514 . DOI:10.1039/c0jm00307ghttp://doi.org/10.1039/c0jm00307g .
Rodriguez, E. D.; Luo, X.; Mather, P. T . Linear/network poly(ε-caprolactone) blends exhibiting shape memory assisted self-healing (SMASH) . ACS Appl. Mater. Interfaces , 2011 . 3 (2 ):152 -161 . DOI:10.1021/am101012chttp://doi.org/10.1021/am101012c .
Luo, X.; Mather, P. T . Shape memory assisted self-healing coating . ACS Macro. Lett. , 2013 . 2 (2 ):152 -156 . DOI:10.1021/mz400017xhttp://doi.org/10.1021/mz400017x .
Birjandi Nejad, H.; Garrison, K. L.; Mather, P. T . Comparative analysis of shape memory-based self-healing coatings . J. Polym. Sci., Part B: Polym. Phys. , 2016 . 54 (14 ):1415 -1426 . DOI:10.1002/polb.v54.14http://doi.org/10.1002/polb.v54.14 .
Wang, L.; Di, S.; Wang, W.; Zhou, S . Self-healing and shape memory capabilities of copper-coordination polymer network . RSC Adv. , 2015 . 5 (37 ):28896 -28900 . DOI:10.1039/C4RA16833Jhttp://doi.org/10.1039/C4RA16833J .
Neffe, A. T.; Hanh, B. D.; Steuer, S.; Lendlein, A . Polymer networks combining controlled drug release, biodegradation, and shape memory capability . Adv. Mater. , 2009 . 21 (32-33 ):3394 -3398 . DOI:10.1002/adma.v21:32/33http://doi.org/10.1002/adma.v21:32/33 .
Müller, A.; Zink, M.; Hessler, N.; Wesarg, F.; Müller, F. A.; Kralisch, D.; Fischer, D . Bacterial nanocellulose with a shape-memory effect as potential drug delivery system . RSC Adv. , 2014 . 4 (100 ):57173 -57184 . DOI:10.1039/C4RA09898Fhttp://doi.org/10.1039/C4RA09898F .
Xue, L.; Dai, S.; Li, Z . Biodegradable shape-memory block co-polymers for fast self-expandable stents . Biomaterials , 2010 . 31 (32 ):8132 -8140 . DOI:10.1016/j.biomaterials.2010.07.043http://doi.org/10.1016/j.biomaterials.2010.07.043 .
Huang, W. M.; Song, C. L.; Fu, Y. Q.; Wang, C. C.; Zhao, Y.; Purnawali, H.; Lu, H. B.; Tang, C.; Ding, Z.; Zhang, J. L . Shaping tissue with shape memory materials . Adv. Drug Deliver. Rev. , 2013 . 65 (4 ):515 -535 . DOI:10.1016/j.addr.2012.06.004http://doi.org/10.1016/j.addr.2012.06.004 .
Sun, L.; Huang, W. M . Thermo/moisture responsive shape-memory polymer for possible surgery/operation inside living cells in future . Mater. Design , 2010 . 31 (5 ):2684 -2689. .
Bilici, C.; Can, V.; Nöchel, U.; Behl, M.; Lendlein, A.; Okay, O . Melt-processable shape-memory hydrogels with self-healing ability of high mechanical strength . Macromolecules , 2016 . 49 (19 ):7442 -7449 . DOI:10.1021/acs.macromol.6b01539http://doi.org/10.1021/acs.macromol.6b01539 .
Migneco, F.; Huang, Y. C.; Birla, R. K.; Hollister, S. J . Poly(glycerol-dodecanoate), a biodegradable polyester for medical devices and tissue engineering scaffolds . Biomaterials , 2009 . 30 (33 ):6479 DOI:10.1016/j.biomaterials.2009.08.021http://doi.org/10.1016/j.biomaterials.2009.08.021 .
Yang, X.; Cui, C.; Tong, Z.; Sabanayagam, C. R.; Jia, X . Poly(ε-caprolactone)-based copolymers bearing pendant cyclic ketals and reactive acrylates for the fabrication of photocrosslinked elastomers . Acta Biomater. , 2013 . 9 (9 ):8232 -8244 . DOI:10.1016/j.actbio.2013.06.005http://doi.org/10.1016/j.actbio.2013.06.005 .
Hiebl, B.; Mrowietz, C.; Goers, J.; Bahramsoltani, M.; Plendl, J.; Kratz, K.; Lendlein, A.; Jung, F . In vivo evaluation of the angiogenic effects of the multiblock copolymer PDC using the hen's egg chorioallantoic membrane test . Clin. Hemorheol. Microcirc. , 2010 . 46 (2-3 ):233 -238. .
Liu, X.; Zhao, K.; Gong, T.; Song, J.; Bao, C.; Luo, E.; Weng, J.; Zhou, S . Delivery of growth factors using a smart porous nanocomposite scaffold to repair a mandibular bone defect . Biomacromolecules , 2014 . 15 (3 ):1019 -1030 . DOI:10.1021/bm401911phttp://doi.org/10.1021/bm401911p .
Gong, T.; Zhao, K.; Liu, X.; Lu, L.; Liu, D.; Zhou, S . A dynamically tunable, bioinspired micropatterned surface regulates vascular endothelial and smooth muscle cells growth at vascularization . Small , 2016 . 12 (41 ):5769 -5778 . DOI:10.1002/smll.v12.41http://doi.org/10.1002/smll.v12.41 .
Liu, D.; Xiang, T.; Gong, T.; Tian, T.; Liu, X.; Zhou, S . Bioinspired 3D multilayered shape memory scaffold with a hierarchically changeable micropatterned surface for efficient vascularization . ACS Appl. Mater. Interfaces , 2017 . 9 (23 ):19725 -19735 . DOI:10.1021/acsami.7b05933http://doi.org/10.1021/acsami.7b05933 .
0
浏览量
3
Downloads
5
CSCD
关联资源
相关文章
相关作者
相关机构