1. The Key Laboratory of Molecular Engineering of Polymer Department of Macromolecular Science
2. Fudan University
3. Shanghai 200433
4. China
Scan for full text
杜强国. PREPARATION OF EVOH MICROPOROUS MEMBRANES via THERMALLY INDUCED PHASE SEPARATION USING BINARY SOLVENTS[J]. 高分子科学(英文版), 2007,(4):379-386.
PREPARATION OF EVOH MICROPOROUS MEMBRANES via THERMALLY INDUCED PHASE SEPARATION USING BINARY SOLVENTS[J]. 2007,(4):379-386.
<正>Microporous ethylene-vinyl alcohol copolymer (EVOH) flat membranes and hollow-fiber membranes with 38 mol% ethylene content were prepared via thermally induced phase separation (TIPS) using the mixture of 1,4-butanediol and poly(ethylene glycol)(PEG400) as diluents. Effects of the ratio of 1,4-butanediol to PEG400 on the phase diagrams, phase separation mechanism and membrane morphology were studied by small angle light scattering (SALS) measurements, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). It was found that by varying the composition of the binary solvent, the phase diagrams and membrane morphology can be controlled successfully. Moreover, the phase diagrams showed that broader regions of Liquid-Liquid (L-L) phase separation were obtained, as well as closer distances between L-L phase separation lines and Solid-Liquid (S-L) phase separation lines. Interconnected structures observed both in the flat membrane and hollow fiber membrane consist with the above results.正>
Microporous ethylene-vinyl alcohol copolymer (EVOH) flat membranes and hollow-fiber membranes with 38 mol% ethylene content were prepared via thermally induced phase separation (TIPS) using the mixture of 1,4-butanediol and poly(ethylene glycol)(PEG400) as diluents. Effects of the ratio of 1,4-butanediol to PEG400 on the phase diagrams, phase separation mechanism and membrane morphology were studied by small angle light scattering (SALS) measurements, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). It was found that by varying the composition of the binary solvent, the phase diagrams and membrane morphology can be controlled successfully. Moreover, the phase diagrams showed that broader regions of Liquid-Liquid (L-L) phase separation were obtained, as well as closer distances between L-L phase separation lines and Solid-Liquid (S-L) phase separation lines. Interconnected structures observed both in the flat membrane and hollow fiber membrane consist with the above results.
0
浏览量
82
Downloads
5
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621