FOLLOWUS
a.Specialized Center of Rubber and Polymer Materials in Agriculture and Industry (RPM), Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
b.Hub of talents in natural rubber under the National Research Council of Thailand, National Research Council of Thailand (NRCT), Bangkok 10900, Thailand
c.Department of Chemical Engineering, Faculty of Engineering, Prince of Songkla University, Songkhla 90110, Thailand
d.National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
e.Institute of Materials Science of Mulhouse, CNRS – UMR 7361, University of Haute-Alsace, France
f.IRDL UMR CNRS 6027, Bionics Group, University of South Britany, F-56100, Lorient, France
fsciwssm@ku.ac.th
收稿日期:2024-11-11,
修回日期:2024-12-27,
录用日期:2025-01-07,
网络出版日期:2025-03-13,
纸质出版日期:2025-04-30
Scan QR Code
Limarun, P.; Buaksuntear, K.; Jansrinak, S.; Julbust, A.; Phongphanphanee, S.; Yangthong, H.; Suethao, S.; Kaewpradit, P.; Jittham, P.; Sucharitpwatskul, S.; Mougin, K.; Spangenberg, A.; Duigou, A. L.; Smitthipong, W. Photostimulus-responsive non-covalent interactions in polymers: a review. Chinese J. Polym. Sci. 2025, 43, 677–694
Phakamat Limarun, Kwanchai Buaksuntear, Siriwan Jansrinak, et al. Photostimulus-responsive Non-covalent Interactions in Polymers: A Review[J]. Chinese journal of polymer science, 2025, 43(5): 677-694.
Limarun, P.; Buaksuntear, K.; Jansrinak, S.; Julbust, A.; Phongphanphanee, S.; Yangthong, H.; Suethao, S.; Kaewpradit, P.; Jittham, P.; Sucharitpwatskul, S.; Mougin, K.; Spangenberg, A.; Duigou, A. L.; Smitthipong, W. Photostimulus-responsive non-covalent interactions in polymers: a review. Chinese J. Polym. Sci. 2025, 43, 677–694 DOI: 10.1007/s10118-025-3301-2.
Phakamat Limarun, Kwanchai Buaksuntear, Siriwan Jansrinak, et al. Photostimulus-responsive Non-covalent Interactions in Polymers: A Review[J]. Chinese journal of polymer science, 2025, 43(5): 677-694. DOI: 10.1007/s10118-025-3301-2.
In this mini-review
we have discussed recent research on photostimulus-responsive non-covalent interactions in polymers. Photo-responsive polymers are a new type of material that is being developed for various applications
such as drug delivery
information storage
sensors
self-healing
anti-bacterial
and environmental applications.
This study reviews light-responsive polymers in various applications
including drug delivery
information storage
sensor
self-healing material
antibacterial or anti-fouling
and environmental applications. Light-responsive polymers are a new material type being developed for various medical
electronics
engineering
and environmental applications. The working principle of light-responsive materials is based on metal-ligand interactions or non-covalent interactions between polymer functional groups
metal ions
and other filler functional groups. Light irradiation causes physical and mechanical changes in drug delivery and antibacterial systems
which results in the materials releasing more drugs or antibacterial substances. When materials in information storage devices and sensors are exposed to light
they can change color or glow. This has been applied for data storage to reveal QR codes under UV light. Additionally
this review discusses the thermodynamic aspects and computer modeling of light-responsive materials to emphasize the importance and development of these materials. Finally
light-responsive polymer development for various applications is presented.
Murthy, P. S. Molecular handshake: recognition through weak noncovalent interactions. J. Chem. Educ. 2006 , 83 , 1010..
Buaksuntear, K.; Limarun, P.; Suethao, S.; Smitthipong, W. Non-covalent interaction on the self-healing of mechanical properties in supramolecular polymers. Int. J. Mol. Sci. 2022 , 23 , 6902..
Chen, X. H.; Zhang, Y. W.; Arora, P.; Guan, X. Y. Nanopore stochastic sensing based on non-covalent interactions. Anal. Chem. 2021 , 93 , 10974−10981..
Maharramov, A. M.; Mahmudov, K. T.; Kopylovich, M. N.; Aliyeva, R. A.; Pombeiro, A. J., in Non-covalent Interactions in the Synthesis and Design of New Compounds , John Wiley & amp; Sons, Inc., Hoboken, New Jersey, 2016 , p. 327−344..
Rasaily, S.; Sharma, D.; Pradhan, S.; Diyali, N.; Chettri, S.; Gurung, B.; Tamang, S.; Pariyar, A. Multifunctional catalysis by a one-dimensional copper(II) metal organic framework containing pre-existing coordinatively unsaturated sites: Interm olecular C―N, C―O, and C―S cross-coupling; stereoselective intramolecular C-N coupling; and aziridination reactions. Inorg. Chem. 2022 , 61 , 13685−13699..
An, X. M.; Li, Y. R.; Xu, M.; Xu, Z. C.; Ma, W. C.; Du, R. C.; Wan, G.; Yan, H. P.; Cao, Y.; Ma, D.; Zhang, Q. H.; Jia, X. D. A reconfigurable crosslinking system via an asymmetric metal–ligand coordination strategy. Polym. Chem. 2022 , 13 , 2531−2537..
Buaksuntear, K.; Panmanee, K.; Wongphul, K.; Lim-arun, P.; Jansinak, S.; Shah, D. U.; Smitthipong, W. Enhancing mechanical properties and stabilising the structure of epoxide natural rubber using non-covalent interactions: Metal–ligand coordination and hydrogen bonding. Polymer 2024 , 291 , 126626..
Chen, J. S.; Peng, Q. Y.; Peng, X. W.; Zhang, H.; Zeng, H. B. Probing and manipulating noncovalent interactions in functional polymeric systems. Chem. Rev. 2022 , 122 , 14594−14678..
Neil G. Connelly, T. D., Richard M. Hartshorn, Alan T. Hutton. Nomenclature of Inorganic Chemistry . Available online: https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf (accessed on 30 December 2023).
Liu, J. H.; Huang, Y. S.; Liu, Y. Z.; Zhang, D. C.; Koynov, K.; Butt, H. J.; Wu, S. Reconfiguring hydrogel assemblies using a photocontrolled metallopolymer adhesive for multiple customized functions. Nat. Chem. 2024 , 16 , 1024−1033..
Rapp, T. L.; Kopyeva, I.; Adhikari, A.; DeForest, C. A. Bioluminescence resonance energy transfer (BRET)-mediated protein release from self-illuminating photoresponsive biomaterials. J. Am. Chem. Soc. 2024 , 146 , 25397−25402..
Sumitani, R.; Mochida, T. Metal-containing poly(ionic liquid) exhibiting photogeneration of coordination network: reversible control of viscoelasticity and ionic conductivity. Macromolecules 2020 , 53 , 6968−6974..
Gerbelli, B. B.; Vassiliades, S. V.; Rojas, J. E. U.; Pelin, J. N. B. D.; Mancini, R. S. N.; Pereira, W. S. G.; Aguilar, A. M.; Venanzi, M.; Cavalieri, F.; Giuntini, F.; Alves, W. A. Hierarchical self-assembly of peptides and its applications in bionanotechnology. Macromol. Chem. Phys. 2019 , 220 , 1900085..
Bukreeva, T.; Barachevsky, V.; Venidiktova, O.; Krikunova, P.; P allaeva, T. Recent development of photochromic polymer capsules for smart materials. Mater. Today Commun. 2024 , 38 , 107769..
Liao, C.; Du, M. Q.; Li, C. Photoswitchable spiropyridine enabled photoactuation of polymeric hydrogels under physiological pH conditions. Chinese J. Polym. Sci. 2024 , 42 , 1602−1609..
Yildirim, M.; Candan, Z. Smart materials: The next generation in science and engineering. Mater. Today Proc . 2023 , DOI: 10.1016/j.matpr.2023.10.116..
Smart Polymers Market . Available online: https://www.marketsandmarkets.com/Market-Reports/smart-polymer-market-216958685.html (accessed on 31 December 2023).
Hu, H.; Tong, Y. W.; He, Y. L. Current insight into enhanced strategies and interaction mechanisms of hydrogel materials for phosphate removal and recovery from wastewater. Sci. Total Environ. 2023 , 892 , 164514..
Lang, Z.; Yan, S. X.; Zhu, Q. Water retention and sustained release of magnesium-based biochar modified hydrogel composite materials. J. Environ. Chem. Eng. 2023 , 11 , 111380..
Snehal Mohite, E.P. Hydrogel Market Outlook - 2027. Available online: https://www.alliedmarketresearch.com/ (accessed on 31 December 2023).
Trade map. Available online: https://www.trademap.org/Index.aspx (accessed on 31 December 2023).
Du, Q. Y.; Zhao, J.; Jiang, L. J.; Liu, Y.; Zhang, X.; Zhou, X.; Wu, Z. T.; Zhang, L.; Luo, X. L. Molecular design on dual stimuli-responsive azobenzene-containing ionic complexes toward self-healing materials under photoirradiation or humid condition at room temperature. Appl. Mater. Today 2023 , 35 , 101945..
Guan, Q.; Fang, Y. L.; Wu, X.; Ou, R. W.; Zhang, X. Y.; Xie, H.; Tang, M. Y.; Zeng, G. S. Stimuli responsive metal organic framework materials towards advanced smart application. Mater. Today 2023 , 64 , 138−164..
Moheb Afzali, A.; Kheradmand, M. A.; Naghib, S. M. Bioreactor design-assisted bioprinting of stimuli-responsive materials for tissue engineering an d drug delivery applications. Bioprinting 2024 , 37 , e00325..
Giammanco, G. E.; Carrion, B.; Coleman, R. M.; Ostrowski, A. D. Photoresponsive polysaccharide-based hydrogels with tunable mechanical properties for cartilage tissue engineering. ACS Appl. Mater. Interfaces 2016 , 8 , 14423−14429..
Giammanco, G. E.; Sosnofsky, C. T.; Ostrowski, A. D. Light-responsive iron(III)–polysaccharide coordination hydrogels for controlled delivery. ACS Appl. Mater. Interfaces 2015 , 7 , 3068−3076..
Ma, Y. W.; Ren, Q. C.; Liu, Z. Y.; Wang, K. Q.; Zhou, S.; Shi, Z. X.; Yin, J. Reversible stimuli-responsive luminescent polymers with adaptable mechanical properties based on europium-malonate complex. Polymer 2021 , 214 , 123259..
Bhuyan, A.; Ahmaruzzaman, M. Recent advances in MOF-5-based photocatalysts for efficient degradation of toxic organic dyes in aqueous medium. Next Sustain. 2024 , 3 , 100016..
Li, J.; Lopez, S.A. Computational Chemistry for Photochemical Reactions. In Comprehensive Computational Chemistry (First Edition), Yáñez, M., Boyd, R.J., Eds.; Elsevier: Oxford, 2024, 658-698.
Yang, B.; Yan, X.; Lan, H. C.; Geng, P.; Fang, Y. F.; Xiao, S. Z. Naphthalimide-based probe as an in situ indicator of photochemical reaction for self-reporting imidazole ring formation. Dyes Pigm. 2023 , 219 , 111592..
Kaur, G.; Singh, G.; Singh, J. Photochemical tuning of materials: A click chemistry perspective. Mater. Today Chem. 2018 , 8 , 56−84..
Fundamental of photocatalytic . Available online: https://archive.lib.cmu.ac.th/full/T/2548/mat0348nw_ch2.pdf (accessed on 31 December 2023).
Photochemical Reaction. Available online: https://testbook.com/chemistry/photochemical-reaction (accessed on 31 December 2023).
Di Martino, M.; Sessa, L.; Diana, R.; Piotto, S.; Concilio, S. Recent progress in photoresponsive biomaterials. Molecules , 2023 , 28(9) , 3 712..
Murillo, M.; Wannemacher, R.; Cabanillas-González, J.; Rodríguez-Mendoza, U. R.; Gonzalez-Platas, J.; Liang, A. K.; Turnbull, R.; Errandonea, D.; Lifante-Pedrola, G.; García-Hernán, A.; Martínez, J. I.; Amo-Ochoa, P. 2D Cu(I)-I coordination polymer with smart optoelectronic properties and photocatalytic activity as a versatile multifunctional material. Inorg. Chem . 2023 , 62 , 10928-10939..
Wei, M. L.; Wan, Y.; Zhang, X. J. Metal-organic framework-based stimuli-responsive polymers. J. Compos. Sci. 2021 , 5 , 101..
Yan, D.; Wang, Z. F.; Zhang, Z. J. Stimuli-responsive crystalline smart materials: From rational design and fabrication to applications. Acc . Chem . Res . 2022 , 55 , 1047−1058..
Yu, F.; Liu, W. B.; Li, B.; Tian, D.; Zuo, J. L.; Zhang, Q. C. Photostimulus-responsive large-area two-dimensional covalent organic framework films. Angew . Chem . Int . Ed . 2019 , 58 (45), 16101-16104..
Offenloch, J. T.; Gernhardt, M.; Blinco, J. P.; Frisch, H.; Mutlu, H.; Barner-Kowollik, C. Contemporary photoligation chemistry: The visible light challenge. Chem. Eur. J. 2019 , 25 , 3700−3709..
Weinstain, R.; Slanina, T.; Kand, D.; Klán, P. Visible-to-NIR-light activated release: From small molecules to nanomaterials. Chem. Rev. 2020 , 120 , 13135−13272..
Fernández, M.; Orozco, J. Advances in functionalized photosensitive polymeric nanocarriers. Polymers 2021 , 13 2464..
Upadhyay, K.; Thomas, S.; Tamrakar, R. K.; Kalarikkal, N. Chapter 11—Functionalized photo-responsive polymeric system. In Advanced Functional Polymers for Biomedical Applications , Mozafari, M. Singh Chauhan, N. P. Eds.; Elsevier: 2019 , p. 211−233..
Png, Z. M.; Wang, C. G.; Yeo, J. C. C.; Lee, J. J. C.; Surat’man, N. E.; Tan, Y. L.; Liu, H. F.; Wang, P.; Tan, B. H.; Xu, J. W.; Loh, X. J.; Zhu, Q. Stimuli-responsive structure–property switchable polymer materials. Mol. Syst. Des. Eng. 2023 , 8 , 1097−1129..
Kano, N.; Yoshino, J.; Kawashima, T. Photoswitching of the Lewis acidity of a catecholborane bearing an azo group based on the change in coordination number of boron. Org. Lett. 2005 , 7 , 3909−3911..
Yoshino, J.; Kano, N.; Kawashima, T. Synthesis of organoboron compounds bearing an azo group and substituent effects on their structures and photoisomerization. Tetrahedron 2008 , 64 , 7774−7781..
Accardo, J. V.; Kalow, J. A. Reversibly tuning hydrogel stiffness through photocontrolled dynamic covalent crosslinks. Chem. Sci. 2018 , 9 , 5987−5993..
Accardo, J. V.; McClure, E. R.; Mosquera, M. A.; Kalow, J. A. Using visible light to tune boronic acid-ester equilibria. J. Am. Chem. Soc. 2020 , 142 , 19969−19979..
Lee, I. N.; Dobre, O.; Richards, D.; Ballestrem, C.; Curran, J. M.; Hunt, J. A.; Richardson, S. M.; Swift, J.; Wong, L. S. Photoresponsive hydrogels with photoswitchable mechanical properties allow time-resolved analysis of cellular responses to matrix stiffening. ACS Appl. Mater. Interfaces 2018 , 10 , 7765−7776..
Noguchi, T.; Akioka, N.; Kojima, Y.; Kawamura, A.; Miyata, T. Photoresponsive polymer films with directly micropatternable surfaces based on the change in free volume by photo-crosslinking. Adv. Mater. Interfaces 2022 , 9 , 2101965..
Kloxin, A. M.; Kasko, A. M.; Salinas, C. N.; Anseth, K. S. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 2009 , 324 , 59−63..
Li, L.; Scheiger, J. M.; Levkin, P. A. Design and applications of photoresponsive hydrogels. Adv. Mater. 2019 , 31 , 1807333..
Zou, L.; Addonizio, C. J.; Su, B.; Sis, M. J.; Braegelman, A. S.; Liu, D. P.; Webber, M. J. Supramolecular hydrogels via light-responsive homoternary cross-links. Biomacromolecules 2021 , 22 , 171−182..
Du, M. Q.; Li, C. Engineering supramolecular hydrogels via reversible photoswitching of cucurbit [8 ] uril-spiropyran complexation stoichiometry. Adv. Mater. 2024 , 36 , 2408484..
Wang, Y. Q.; Bimmermann, A. M.; Neufurth, M.; Besenius, P. Cucurbit[8 ] uril mediated supramolecular and photocrosslinked interpenetrating network hydrogel matrices for 3D-bioprinting. Adv. Mater. 2024 , 36 , 2313270..
Gemen, J.; Church, J. R.; Ruoko, T. P.; Durandin, N.; Białek, M. J.; Weißenfels, M.; Feller, M.; Kazes, M.; Odaybat, M.; Borin, V. A.; Kalepu, R.; Diskin-Posner, Y.; Oron, D.; Fuchter, M. J.; Priimagi, A.; Schapiro, I.; Klajn, R. Disequilibrating azobenzenes by visible-light sensitization under confinement. Science 2023 , 381 , 1357−1363..
Zhang, Q. W.; Li, D. F.; Li, X.; White, P. B.; Mecinović, J.; Ma, X.; Ågren, H.; Nolte, R. J. M.; Tian, H. Multicolor photoluminescence including white-light emission by a single host-guest complex. J. Am. Chem. Soc. 2016 , 138 , 13541−13550..
Roback, J. C.; Minnis, M. B.; Ghebreyessus, K.; Hayward, R. C. Visible light-triggered microactuators and dynamic surfaces from hydrogels containing photoswitchable host–guest complexes. ACS Appl. Polym. Mater. 2024 , 6 , 6627−6634..
Cheng, H. B.; Zhang, S. C.; Qi, J.; Liang, X. J.; Yoon, J. Advances in application of azobenzene as a trigger in biomedicine: Molecular design and spontaneous assembly. Adv. Mater. 2021 , 33 , 2007290..
Gu, Y. W.; Alt, E. A.; Wang, H.; Li, X. P.; Willard, A. P.; Johnson, J. A. Photoswitching topology in polymer networks with metal-organic cages as crosslinks. Nature 2018 , 560 , 65−69..
Gorelikov, I.; Field, L. M.; Kumacheva, E. Hybrid microgels photoresponsive in the near-infrared spectral range. J. Am. Chem. Soc. 2004 , 126 , 15938−15939..
Suzuki, A.; Ishii, T.; Maruyama, Y. Optical switching in polymer gels. J. Appl. Phys. 1996 , 80 , 131−136..
Sumaru, K.; Takagi, T.; Sugiura, S.; Kanamori, T. Spiropyran-Functionalized Hydrogels. In Soft Actuators: Materials, Modeling, Applications, and FuturePerspectives, Asaka, K., Okuzaki, H., Eds.; Springer Singapore: Singapore, 2019, 309-320.
Liu, J. W.; Nie, J.; Zhao, Y. F.; He, Y. Preparation and properties of different photorespo nsive hydrogels modulated with UV and visible light irradiation. J. Photochem. Photobiol. A Chem. 2010 , 211 , 20−25..
Çanakçı, D. Synthesis, spectroscopic, thermodynamics and kinetics analysis study of novel polymers containing various azo chromophore. Sci. Rep. 2020 , 10 , 477..
Zhang, Q. M.; Xu, W. W.; Serpe, M. J. Optical devices constructed from multiresponsive microgels. Angew. Chem. Int. Ed. 2014 , 53 , 4827−4831..
Suzuki, T.; Moriya, T.; Endo, R.; Iwasaki, N. A photo-responsive polymeric azopyridine ligand with metal-complexation sensitivity: application to coordination equilibrium studies on the polymer complexes of a cobalt(ii) Schiff base. Polym. Chem. 2017 , 8 , 761−768..
Dehghany, M.; Zhang, H. H.; Naghdabadi, R.; Hu, Y. H. A thermodynamically-consistent large deformation theory coupling photochemical reaction and electrochemistry for light-responsive gels. J. Mech. Phys. Solids 2018 , 116 , 239−266..
Long, R.; Qi, H. J.; Dunn, M. L. Thermodynamics and mechanics of photochemcially reacting polymers. J. Mech. Phys. Solids 2013 , 61 , 2212−2239..
Zhou, Q. F.; Fursule, I.; Berron, B. J.; Beck, M. J. Toward spatiotemporally controlled synthesis of photoresponsive polymers: Computational design of azobenzene-containing monomers for light-mediated ROMP. J. Phys. Chem. A 2016 , 120 , 7101−7111..
Li, C.; Iscen, A.; Palmer, L. C.; Schatz, G. C.; Stupp, S. I. Light-driven expansion of spiropyran hydrogels. J. Am. Chem. Soc. 2020 , 142 , 8447−8453..
Guo, K. X.; Yang, X. H.; Zhou, C.; Li, C. Self-regulated reversal deformation and locomotion of structurally homogenous hydrogels subjected to constant light illumination. Nat. Commun. 2024 , 15 , 1694..
Gafiullina, A.; Ladewig, B. P.; Zhang, J. J. Photoresponsive polymer and polymer composite membranes for gas separation. ACS Appl. Polym. Mater. 2023 , 5 , 1−30..
Vertechy, R.; Berselli, G.; Parenti Castelli, V.; Bergamasco, M. Continuum thermo-electro-mechanical model for electrostrictive elastomers. J. Intell. Mater. Syst. Struct. 2013 , 24 , 761−778..
Willerich, I.; Gröhn, F. Thermodynamics of photoresponsive polyelectrolyte–dye assemblies with irradiation wavelength triggered particle size. Macromolecules 2011 , 44 , 4452−4461..
Okada, S.; Sato, E. Thermo- and photoresponsive behaviors of dual-stimuli-responsive organogels consisting of homopolymers of coumarin-containing methacrylate. Polymers 2021 , 13 , 329..
Sumaru, K. Development of photo-responsive polymers for manipulation of cell culture. JSAP Rev. 2023 , 2023 , DOI:10.11470/jsaprev.230419..
Xu, F.; Feringa, B. L. Photoresponsive supramolecular polymers: From light-controlled small molecules to smart materials. Adv. Mater. 2023 , 35 , 2204413..
Chen, J. L.; Li, C. C.; Jia, H.; Shen, Z. H.; Zhao, R.; Su, T.; Xiang, B.; Wang, X. J.; Boukhvalov, D. W.; Luo, Z. Y.; Luo, Y. L. Novel molecular-level insight into the self-healing behavior and mechanism of polyurethane-urea el astomer based on a noncovalent strategy. Macromolecules 2022 , 55 , 4776−4789..
Chen, J.; Li, F. Z.; Luo, Y. L.; Shi, Y. J.; Ma, X. F.; Zhang, M.; Boukhvalov, D.; Luo, Z. Y. A self-healing elastomer based on an intrinsic non-covalent cross-linking mechanism. J. Mater. Chem. A 2019 , 7 , 15207−15214..
Chen, Q. H.; Huang, W. H.; Zhang, L. Q.; Xi, L.; Liu, J. Fully atomistic molecular dynamics simulation of chemically modified natural rubber with hydrogen-bonding network. Polymer 2023 , 284 , 126284..
Guo, P. L.; Zhang, H. Y.; Liu, X. K.; Sun, J. Q. Counteranion-mediated intrinsic healing of poly(ionic liquid) copolymers. ACS Appl. Mater. Interfaces 2018 , 10 , 2105−2113..
Wang, N.; Feng, X. W.; Pei, J. K.; Cui, Q. K.; Li, Y. J.; Liu, H. Y.; Zhang, X. X. Biobased reversible cross-linking enables self-healing and reprocessing of epoxy resins. ACS Sustain. Chem. Eng. 2022 , 10 , 3604−3613..
Kolmakov, G. V.; Matyjaszewski, K.; Balazs, A.C. Harnessing labile bonds between nanogel parti cles to create self-healing materials. ACS Nano 2009 , 3 , 885−892..
Mohonee, V. K.; Goh, K. L.; Mishnaevsky, L.; Pasbakhsh, P. Capsule based self-healing composites: new insights on mechanical behaviour based on finite element analysis. Comput. Mater. Sci. 2021 , 192 , 110203..
Ponnusami, S. A.; Krishnasamy, J.; Turteltaub, S.; van der Zwaag, S. A cohesive-zone crack healing model for self-healing materials. Int. J. Solids Struct. 2018 , 134 , 249−263..
Verberg, R.; Dale, A. T.; Kumar, P.; Alexeev, A.; Balazs, A. C. Healing substrates with mobile, particle-filled microcapsules: designing a ‘repair and go’ system. J. R. Soc. Interface 2007 , 4 , 349−557..
Voyiadjis, G. Z.; Shojaei, A.; Li, G. Q. A thermodynamic consistent damage and healing model for self healing materials. Int. J. Plast. 2011 , 27 , 1025−1044..
Guo, H. S.; Han, Y.; Zhao, W. Q.; Yang, J.; Zhang, L. Universally autonomous self-healing elastomer with high stretchability. Nat. Commun. 2020 , 11 , 2037..
Zheng, X. R.; Yang, H.; Sun, Y. G.; Zhang, Y. Q.; Guo, Y. F. Molecular dynamics simulations on self-healing behavior of photo-polymerization network. Smart Mater. Struct. 2018 , 27 , 105013..
Chen, X. H.; Liu, Y. G.; Li, J. F.; Wong, T. W.; Chen, T.; Zhang, T.; Wang, L. Light responsive self-healable carbon nanotube/polyurethane smart networks with precisely remote-controlled shape-changing properties. Polym. Test. 2023 , 122 , 108026..
Alder, B. J.; Wainwright, T. E. Phase transition for a hard sphere system. J. Chem. Phys. 1957 , 27 , 1208−1209..
Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 1953 , 21 , 1087−1092..
Gooneie, A.; Schuschnigg, S.; Holzer, C. A review of multiscale computational methods in polymeric materials. Polymers 2017 , 9 , 16..
Hollingsworth, S. A.; Dror, R. O. Molecular dynamics simulation for all. Neuron 2018 , 99 , 1129−1143..
Lin, Y. L.; Chang, H. Y.; Sheng, Y. J.; Tsao, H. K. Photoresponsive polymersomes formed by amphiphilic linear-dendritic block copolymers: generation-dependent aggregation behavior. Macromolecules 2012 , 45 , 7143−7156..
Zheng, X. Y.; Wang, D.; Shuai, Z. G. Coarse-grained molecular dynamics simulations of photoswitchable assembly and disassembly. Nanoscale 2013 , 5 , 3681−3689..
Choi, J.; Shin, H.; Cho, M. Multiscale multiphysical analysis of photo-mechanical properties of interphase in light-responsive polymer nanocomposites. Compos. Sci. Technol. 2018 , 160 , 32−41..
Li, X. D.; Li, S. S.; Jiang, X. B.; Zhu, X. L.; Kong, X. Z. Unconventional fluorescent and multi-responsive polysiloxane: Synthesis, characterization and biological applications. Chinese J. Polym. Sci. 2024 , 42 , 579−590..
Sharma, A.; Singh, M.; Sharma, V.; Vashishth, A.; Raj, M.; Upadhyay, S. K.; Singh, S.; Ramniwas, S.; Dhama, K.; Sharma, A. K.; Bhatia, S. K. Current paradigms in employing self-assembled structures: drug delivery implications with improved therapeutic potential. Colloids Surf. B Biointerfaces 2024 , 234 , 113745..
Sun, X. F.; Zhang, X.; Song, S. P.; Yao, Y. Q.; Zhang, Y.; Wang, C. L.; Sun, J. J.; Wang, Q. F. Light-responsive self-immolative L-glutamic acid-based polyester nanoparticles for controlled drug release via passerini three-component polymerization. Chinese J. Polym. Sci. 2024 , 42 , 570−578..
Kim, Y.; Jeong, D.; Shinde, V. V.; Hu, Y. L.; Kim, C.; Jung, S. Azobenzene-grafted carboxymethyl cellulose hydrogels with photo-switchable, reduction-responsive and self-healing propertiesfor a controlled drug release system. Int. J. Biol. Macromol. 2020 , 163 , 824−832..
Wang, C.; Zhang, G. Y.; Liu, G. H.; Hu, J. M.; Liu, S. Y. Photo- and thermo-responsive multicompartment hydrogels for synergistic delivery of gemcitabine and doxorubicin. J. Control. Release 2017 , 259 , 149−159..
Lv, Y.; Guo, C. X.; Zhang, S. A.; Li, Z. Z.; Xie, R. H.; Xiong, L. B.; Wu, H. Y.; Lin, X. H.; Wa ng, M. Reversible multiplexing analog and digital optical information storage in Eu 3+ doped perovskite-type photochromic materials. Ceram. Int. 2023 , 49 , 40766−40774..
Tan, Q. L.; Gou, K.; Tang, J. Z.; Wei, M. H.; Wang, C.; Nie, Y. J.; Weng, G. S. Highly stretchable and tunable thermo-fluorochromic polymer elastomer through Eu 3+ dynamic coordination cross-linking. Chinese J. Polym. Sci. 2024 , 42 , 1449−1458..
Zhang, R. T.; Jin, Y. H.; Wang, C. L.; Wu, H. Y.; Chen, L.; Hu, Y. H. A photochromic material-based platform for high-precision UV light detection and erasable optical information storage. J. Alloys Compd. 2023 , 934 , 167918..
Wang, Z. S.; Li, Y. S.; Wang, X. Y.; Pi, M. H.; Yan, B.; Ran, R. A rapidly responsive, controllable, and reversible photo-thermal dual response hydrogel. Polymer 2021 , 237 , 124344..
Song, H.; Wu, X. P.; Zhang, Y. J.; Xu, S. C.; Li, B. A flexible luminescence film with temperature and infrared response based on Eu 2+ /Dy 3+ Co-doped Sr 2 Si 5 N 8 phosphors for optical information storage applications. Heliyon 2022 , 8 , e10045..
Liu, L.; Wang, J.; Feng, X. Y.; Xu, K.; Liu, W.; Peng, X.; Du, H. G.; Tan, J. J. Visible-light-mediated photocatalyst-free hydroacylation of azodicarboxylic acid derivatives with 4-acyl-1, 4-dihydropyridines. Chin. J. Chem. 2024 , 42 , 1230−1236..
Wang, D. R.; Wang, X. G. Amphiphilic azo polymers: Molecular engineering, self-assembly and photoresponsive properties. Prog. Polym. Sci. 2013 , 38 , 271−301..
Yi, S. Y.; Wang, L. B.; Cheng, X. X.; Fujiki, M.; Zhang, W. Chiroptical generation, switching, and long-term memory in supramolecular azobenzene-pendant polymer: regulation by cellulose peralkyl esters, D-/L-glucose permethyl esters, solvents, UV light irradiation, and thermal annealing process. Chin. J. Chem. 2023 , 41 , 3625−3632..
Zhang, X.; Wang, B. B.; Zheng, Z. Y.; Yang, G. Q.; Zhang, C.; Liao, L. Q. A robust photoswitchable dual-color fluorescent poly(vinyl alcohol) composite hydrogel constructed by photo-responsive FRET effect. Dyes Pigm. 2023 , 208 , 110800..
Zhong, Y. W. Photofunction-directed coordin ation molecular engineering. Chin. J. Chem. 2021 , 39 , 543−549..
Wang, B. B.; Liu, L. J.; Liao, L. Q. Light and ferric ion responsive fluorochromic hydrogels with high strength and self-healing ability. Polym. Chem. 2019 , 10 , 6481−6488..
Pan, R. H.; Liu, G. Q.; Zeng, Y.; He, X. Z.; Ma, Z. Y.; Wei, Y.; Chen, S. L.; Yang, L.; Tao, L. A multi-responsive self-healing hydrogel for controlled release of curcumin. Polym. Chem. 2021 , 12 , 2457−2463..
Suethao, S.; Prasopdee, T.; Buaksuntear, K.; Shah, D. U.; Smitthipong, W. Recent developments in shape memory elastomers for biotechnology applications. Polymers 2022 , 14 , 3276..
Yang, M.; Wang, L. L.; Cheng, Y. B.; Ma, K.; Wei, X. R.; Jia, P. X.; Gong, Y. K.; Zhang, Y.; Yang, J. F.; Zhao, J. Light- and pH-responsive self-healing hydrogel. J. Mater. Sci. 2019 , 54 , 9983−9994..
Yang, R. M.; Jin, W.; Huang, C.; Liu, Y. H. Azobenzene based photo-responsive hydrogel: synthesis, self-assembly, and antimicrobial activity. Gels 2022 , 8 , 414..
Huang, L.; Liu, C. J. Progress for the development of antibacterial surface based on surface modification technology. Supramol. Mater. 2022 , 1 , 100008..
Baimark, Y.; Niamsa, N. Study on wood vinegars for use as coagulating and antifungal agents on the production of natural rubber sheets. Biomass Bioenergy 2009 , 33 , 994−998..
Kartal, S. N.; Imamura, Y.; Tsuchiya, F.; Ohsato, K. Preliminary evaluation of fungicidal and termiticidal activities of filtrates from biomass slurry fuel production. Bioresour. Technol. 2004 , 95 , 41−47..
Nakayama, F. S.; Vinyard, S. H.; Chow, P.; Bajwa, D. S.; Youngquist, J. A.; Muehl, J. H.; Krzysik, A. M. Guayule as a wood preservative. Ind. Crops Prod. 2001 , 14 , 105−111..
Hou, N.; Wang, R.; Wang, F.; Bai, J. H.; Jiao, T. F.; Bai, Z. H.; Zhang, L. X.; Zhou, J. X.; Peng, Q. M. Self-assembled hydrogels constructed via host-guest polymers with highly efficient dye removal capability for wastewater treatment. Colloids Surf. A Physicochem. Eng. Aspects 2019 , 579 , 123670..
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构