FOLLOWUS
a.Key Laboratory of Science and Technology on High-Tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
b.University of Chinese Academy of Sciences, Beijing 100049, China
c.State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
xiashuang@scu.edu.cn (S.X.)
fuwenxin@iccas.ac.cn (W.X.F.)
收稿日期:2024-12-05,
修回日期:2025-01-01,
录用日期:2025-01-11,
网络出版日期:2025-02-13,
纸质出版日期:2025-03-01
Scan QR Code
Fan, W. J.; Xie, M.; Tian, J. F.; He, Y.; Xia, S.; Fu, W. X. Topological design of low dielectric ladder-like polysilsesquioxane and copolymers. Chinese J. Polym. Sci. 2025, 43, 477–487
Wen-Jie Fan, Meng Xie, Jin-Feng Tian, et al. Topological Design of Low Dielectric Ladder-like Polysilsesquioxane and Copolymers[J]. Chinese journal of polymer science, 2025, 43(3): 477-487.
Fan, W. J.; Xie, M.; Tian, J. F.; He, Y.; Xia, S.; Fu, W. X. Topological design of low dielectric ladder-like polysilsesquioxane and copolymers. Chinese J. Polym. Sci. 2025, 43, 477–487 DOI: 10.1007/s10118-025-3296-8.
Wen-Jie Fan, Meng Xie, Jin-Feng Tian, et al. Topological Design of Low Dielectric Ladder-like Polysilsesquioxane and Copolymers[J]. Chinese journal of polymer science, 2025, 43(3): 477-487. DOI: 10.1007/s10118-025-3296-8.
We present a topological design approach for ladder-like polysilsesquioxanes and copolymers. The cured materials exhibit excellent dielectric properties (
D
k
<
3.0
D
f
<
10
−2
)
superior thermal stability (
T
d5
>
453 °C)
reduced water absorption (from 0.33 wt% to 0.06 wt%) and enhanced mechanical properties.
Low dielectric constant (low-
k
) materials are critical for advanced packaging in high-density microelectronic devices and high-frequency communication technologies. Ladder polysiloxanes
which are characterized by their unique double-chain structure and intrinsic microporosity
offer remarkable advantages in terms of thermal stability
oxidation resistance
and dielectric performance. However
structural defects in ladder polysiloxanes
such as cage-like and irregular oligomers
and their effects on dielectric properties remain underexplored. In this study
a series of ladder-like polysiloxanes (
X-TMS
) with diverse side groups weresynthesized
via
a one-step base-catalyzed method. The influence of the benzocyclobutene (BCB) side groups on the formation of regular ladder structures was systematically investigated. Notably
BCB incorporation disrupted the structural regularity
favoring the formation of cage-like and irregular topologies
which were extensively characterized using
29
silicon nuclear magnetic resonance spectroscopy (
29
Si-NMR)
Fourier transform infrared spectroscopy (FTIR)
gel permeation chromatography (GPC)
and X-ray diffraction (XRD). These structural defects were beneficial for improving the hydrophobicity and thermal stability. Copolymerization of X-TMS with commercial DVS-BCB resins further enhanced the mechanical properties
with the elastic modulus increasing from 3.6 GPa to 4.4 GPa and water absorption reduced from 0.33 wt% to 0.06 wt%. This study establishes a clear correlation between topological structures and material properties. These findings not only advance the un
derstanding of the structure-property relationships in ladder polysiloxanes but also provide a novel approach for designing high-performance interlayer dielectric materials for next-generation microelectronics.
Volksen, W.; Miller, R. D.; Dubois, G. Low dielectric constant materials. Chem. Rev. 2010 , 110 , 56−110..
Li, X. T.; Zhu, X. M.; Dong, J.; Zhao, X.; Zhang, Q. H. Preparation of low-dielectric permittivity polyimide resins with high surface activity from chemically bonded hyperbranched polysiloxane. Chinese J. Polym. Sci. 2021 , 39 , 1200−1210..
Fang, L. X.; Feng, Y. G.; Li, L.; Yin, G. W.; Wang, H. l.; Xu, Z.; Xu, L. W. Cyclotriphophazene-centered six-arm eugenol-linked low-dielectric materials with high thermostability and transparency. ACS Sustain. Chem. Eng. 2022 , 10 , 13133−13144..
Sun, Q.; Yuan, Z.W.; Fan, W.-J.; Li, M. L.; Fu, W. X. Low dielectric benzocyclobutene-type polymers based on facile synthesis of linear fluorinated monomer. Chinese J. Polym. Sci. 2023 , 41 , 1760−1766..
Li, Y. Q.; Cao, Y. J.; Wu, S. L.; Ju, Y. L.; Zhang, X. H.; Lu, C. H.; Sun, W. Manipulative pore-formation of polyimide film for tuning the dielectric property via breath figure method. Polymer 2023 , 269 , 125731..
Lee, A. S.; Baek, K. Y.; Hwang, S. S. Synthesis of a Photocurable Ladder-like Poly(phenyl- co -mercaptopropyl)silsesquioxane as gate dielectric material. Mol. Cryst. Liq. Cryst. 2013 , 580 , 88−94..
Zhou, Q. L.; Yan, S. K.; Han, C. C.; Xie, P.; Zhang, R. B. Promising functional materials based on ladder polysiloxanes. Adv. Mater. 2008 , 20 , 2970−2976..
Chen, X. X.; Ye, J. H.; Yuan, L.; Liang, G. Z.; Gu, A. J. Multi-functional ladderlike polysiloxane: synthesis, characterization and its high performance flame retarding bismaleimide resins with simultaneously improved thermal resistance, dimensional stability and dielectric properties. J. Mater. Chem. A 2014 , 2 , 7491−7501..
Kaneko, Y.; Iyi, N.; Matsumoto, T.; Kitamura, K. Synthesis of rodlike polysiloxane with hexagonal phase by sol-gel reaction of organotrialkoxysilane monomer containing two amino groups. Polymer 2005 , 46 , 1828−1833..
Unno, M.; Matsumoto, T.; Matsumoto, H. Synthesis of laddersiloxanes by novel stereocontrolled approach. J. Organomet. Chem. 2007 , 692 , 307−312..
Unno, M.; Suto, A.; Matsumoto, H. Pentacyclic laddersiloxane. J. Am. Chem. Soc. 2002 , 124 , 1574−1575..
Zhang, X.; Xie, P.; Shen, Z.; Jiang, J.; Zhu, C.; Li, H.; Zhang, T.; Han, C. C.; Wan, L.; Yan, S.; Zhang, R. Confined synthesis of a cis-isotactic ladder polysilsesquioxane by using a π-stacking and H-bonding superstructure. Angew. Chem. Int. Ed. 2006 , 45 , 3112−3116..
Ren, Z.; Cao, X.; Xie, P.; Zhang, R.; Yan, S.; Ma, Y. Supramolecular architecture-directed synthesis of a reactive and purely inorganic ladder polyhydrosilsesquioxane. Chem. Commun . 2009, 4079−4081.
Choi, S. S.; Lee, A. S.; Lee, H. S.; Jeon, H. Y.; Baek, K. Y.; Choi, D. H.; Hwang, S. S. Synthesis and characterization of UV-curable ladder-like polysilsesquioxane. J. Polym. Sci. Polym. Chem. 2011 , 49 , 5012−5018..
Lai, Z.; Liu, G. Facile Preparation of a transparent and rollable omniphobic coating with exceptional hardness and wear resistance. ACS Appl. Mater. Interfaces 2022 , 14 , 35138−35147..
D’Arienzo, M.; Diré, S.; Masneri, V.; Rovera, D.; Di Credico, B.; Callone, E.; Mascotto, S.; Pegoretti, A.; Ziarelli, F.; Scotti, R. Tailoring the dielectric and mechanical properties of polybutadiene nanocomposites by using designed ladder-like polysilsesquioxanes. ACS Appl. Nano Mater. 2018 , 1 , 3817−3828..
Shi, C.; Liu, S.; Wu, Y.; Cheng, K.; Zhao, J.; Fu, Y. Dielectric constant, thermal and mechanical properties of ladder-like polypropylsilsesquioxane/crown ether―polyimide nanocomposites. Macromol. Chem. Phys. 2019 , 220 , 1900017..
Shang, X. X.; Cao, X. Y.; Ma, Y. M.; Kumaravel, J. J.; Zheng, K.; Zhang, J. N.; Zhang, R. B. Diphenylsiloxane-bridged ladder-like hydrido-polysiloxane and the derivatisation by triphenylsiloxy substitution. Eur. Polym. J. 2018 , 106 , 53−62..
Shang, X. X.; Duan, S.; Zhang, M.; Cao, X. Y.; Zheng, K.; Zhang, J. N.; Ma, Y. M.; Zhang, R. B. UV-curable ladder-like diphenylsiloxane-bridged methacryl-phenyl-siloxane for high power LED encapsulation. RSC Adv. 2018 , 8 , 9049−9056..
Choi, S. S.; Lee, A. S.; Hwang, S. S.; Baek, K. Y. Structural control of fully condensed polysilsesquioxanes: ladderlike vs cage structured polyphenylsilsesquioxanes. Macromolecules 2015 , 48 , 6063−6070..
Peng, Q. X.; Hu, H.; Ma, J. J.; Yang, J. X. High performance low dielectric polybenzocyclobutene nanocomposites with organic-inorganic hybrid silicon nanoparticles. Phys. Chem. Chem. Phys. 2022 , 24 , 6570−6579..
Yang, X. F.; Cao, C.; Chen, Z. H.; Liu, J.; Luo, M. X.; Lai, G. Q. Synthesis of ladder-like polyphenylsilsesquioxanes with fairly high regularity using 1,2-ethylenediamine as endo-template. Chinese J. Polym. Sci. 2015 , 33 , 1305−1312..
Brown, J. F.; Vogt, L. H.; Katchman, A.; Eustance, J. W.; Kiser, K. M. Double chain polymers of phenylsilsesquioxane. J. Am. Chem. Soc. 1960 , 82 , 6194−6195..
Sato, Y.; Hayami, R.; Gunji, T. Characterization of NMR, IR, and Raman spectra for siloxanes and silsesquioxanes: a mini review. J. Sol-Gel Sci. Technol. 2022 , 104 , 36−52..
Fan, W. J.; Du, Y. P.; Yuan, Z. W.; Zhang, P. X.; Fu, W. X. Cross-linking behavior and effect on dielectric characteristics of benzocyclobutene-based polycarbosiloxanes. Macromolecules 2023 , 56 , 6482−6491..
Fan, W. J.; Hong, N. M.; Sun, Q.; Li, M. L.; Fu, W. X. Thermo-curable and photo-patternable polysiloxanes and polycarbosiloxanes by a facile Piers-Rubinsztajn polycondensation and post-modification. Polym. Chem. 2022 , 13 , 2187−2194..
Chen, X.; Fang, L.; Chen, X.; Zhou, J.; Wang, J.; Sun, J.; Fang, Q. A low-dielectric polymer derived from a biorenewable phenol (eugenol). ACS Sustain. Chem. Eng. 2018 , 6 , 13518−13523..
Hu, H.; Liu, L.L.; Li, Z.; Zhao, C. J.; Huang, Y. W.; Chang, G. J.; Yang, J. X. Benzocyclobutene/vinylphenyl-introduced polycarbosilanes with low dielectric constant, high temperature performance and photopatternability. Polymer 2015 , 66 , 58−66..
Dai, M. L.; Tao, Y. Q.; Fang, L. X.; Wang, C. Y.; Sun, J.; Fang, Q. Low dielectric polymers with high thermostability derived from biobased vanillin. ACS Sustain. Chem. Eng. 2020 , 8 , 15013−15019..
Li, M. L.; Sun, Q.; Fan, W. J.; Lu, X.; Sun, J. Z.; Guo, Y. L.; Liu, Y. Q.; Fu, W. X. A bis-stabilized interface strategy forlow- k benzocyclobutene-based hollow silica nanocomposites. ACS Appl. Polym. Mater. 2023 , 5 , 3698−3706..
Jiang, L.; Lan, Y. Q.; He, Y. Y.; Li, Y. Z.; Luo, J. B. Functions of trilon (R) P as a polyamine in copper chemical mechanical polishing. Appl. Surf. Sci. 2014 , 288 , 265−274..
Xi, Y.; Sun, Y.; Li, W.; Li, Z. Facile fabrication of polysiloxane micro/nanostructure with controllable morphology and super-hydrophobicity. Polymer 2021 , 213 , 123317..
0
浏览量
7
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构