a.College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
b.Shandong Institute for Product Quality Inspection, Jinan 250102, China
c.College of Chemical Engineering, Tianjin University, Tianjin 300072, China
chm_liss@ujn.edu.cn (S.S.L.)
chm_zhuxl@ujn.edu.cn (X.L.Z.)
纸质出版日期:2024-6-1,
网络出版日期:2024-4-15,
收稿日期:2024-1-31,
修回日期:2024-2-24,
录用日期:2024-3-6
Scan for full text
Yin, F. M.; Wu, L. L.; Li, S. S.; Pan, X. N.; Zhu, X. L.; Jiang, X. B.; Kong, X. Z. Unconventional fluorescent and multi-responsive polyethyleneimine with LCST and UCST behavior: synthesis, characterization and biological applications. Chinese J. Polym. Sci. 2024, 42, 826–837
Feng-Ming Yin, Li-Li Wu, Shu-Sheng Li, et al. Unconventional Fluorescent and Multi-responsive Polyethyleneimine with LCST and UCST Behavior: Synthesis, Characterization and Biological Applications[J]. Chinese Journal of Polymer Science, 2024,42(6):826-837.
Yin, F. M.; Wu, L. L.; Li, S. S.; Pan, X. N.; Zhu, X. L.; Jiang, X. B.; Kong, X. Z. Unconventional fluorescent and multi-responsive polyethyleneimine with LCST and UCST behavior: synthesis, characterization and biological applications. Chinese J. Polym. Sci. 2024, 42, 826–837 DOI: 10.1007/s10118-024-3120-x.
Feng-Ming Yin, Li-Li Wu, Shu-Sheng Li, et al. Unconventional Fluorescent and Multi-responsive Polyethyleneimine with LCST and UCST Behavior: Synthesis, Characterization and Biological Applications[J]. Chinese Journal of Polymer Science, 2024,42(6):826-837. DOI: 10.1007/s10118-024-3120-x.
Synthesised fluorescent and multi-responsive polyethyleneimine (RFPEI) exhibits both LCST and UCST properties in water and stimuli-adjustable fluorescence emission. Its fluorescence properties and phase transition process are examined systematicly. RFPEI shows great potential for cell imaging
trace detection
and controlled release of doxorubicin.
Non-aromatic fluorescent and multi-responsive materials
exhibiting inherent fluorescence emission and controlled phase change
have garnered significant attention in recent years. However
the underlying interaction between their fluorescent properties and phase transition remains unclear. In this study
we synthesized a series of catalyst-free aza-Michael addition-based polyethyleneimine (RFPEI) materials by reacting polyethyleneimine (PEI) with
N
-isopropyl acrylamide (NIPAM). The resulting RFPEI was comprehensively characterized
and demonstrated dual-phase transition behavior (LCST and UCST) in water
which could be finely tuned by adjusting its composition or external factors such as pH. Notably
upon UV irradiation (365 nm)
RFPEI exhibited strong fluorescence emission. We further investigated the effects of NIPAM grafting percentage to PEI
polymer concentration
and pH on the LCST/UCST and fluorescent properties of RFPEI aqueous solutions. Moreover
we showcased the great potential of RFPEI as a versatile tool for physiological cell imaging
trace detection
and controlled release of doxorubicin. Our study presents a novel class of stimuli-responsive fluorescent materials with promising applications in the field of biomedicine.
PolyethyleneimineMulti-responsivenessIntrinsic fluorescence emissionCell imagingControlled drug release
Zhang, J.; He, B.; Hu, Y.; Alam, P.; Zhang, H.; Lam, J. W. Y.; Tang, B. Z. Stimuli-responsive AIEgens.Adv. Mater.2021,33, 2008071..
Li, J.; Du, N.; Tan, Y.; Hsu, H. Y.; Tan, C.; Jiang, Y. Conjugated polymer nanoparticles based on copper coordination for real-time monitoring of pH-responsive drug delivery.ACS Appl. Bio Mater.2021,4, 2583−2590..
Pooresmaeil, M.; Namazi, H.; Salehi, R. Dual anticancer drug delivery of D-galactose-functionalized stimuli-responsive nanogels for targeted therapy of the liver hepatocellular carcinoma.Eur. Polym. J.2022,167, 111061..
Xiao, Y.; Pandey, K.; Nicolás-Boluda, A.; Onidas, D.; Nizard, P.; Carn, F.; Lucas, T.; Gateau, J. m.; Martin-Molina, A.; Quesada-Pérez, M.; Ramos-Tejada, M. D. M.; Gazeau, F.; Luo, Y.; Mangeney, C. Synergic thermo- and pH-sensitive hybrid microgels loaded with fluorescent dyes and ultrasmall gold nanoparticles for photoacoustic imaging and photothermal therapy.ACS Appl. Mater. Interfaces2022,14, 54439−54457..
Zhang, P.; Xue, M.; Lin, Z.; Yang, H.; Zhang, C.; Cui, J.; Chen, J. Aptamer functionalization and high-contrast reversible dual-color photoswitching fluorescence of polymeric nanoparticles for latent fingerprints imaging.Sensor Actuat. B2022,367, 132049..
Sha, H.; Yan, B. A pH-responsive Eu(III) functionalized metal-organic framework hybrid luminescent film for amino acid sensing and anti-counterfeiting.J. Mater. Chem. C2022,10, 7633−7640..
Yu, Y.; Si, M.; Lu, W.; Wu, S.; Wei, S.; Wu, B.; Chen, X.; Xie, W.; Chen, T. Confining monochromophore in dynamic polymer network for multi-stimuli responsive fluorescence-phosphorescence dual-emission.Chem. Eng. J.2023,478, 147271..
Moniruzzaman, M.; Kim, J. N-doped carbon dots with tunable emission for multifaceted application: solvatochromism, moisture sensing, pH sensing, and solid state multicolor lighting.Sensor Actuat. B2019,295, 12−21..
Cheng, Y.; Dai, J.; Sun, C.; Liu, R.; Zhai, T.; Lou, X.; Xia, F. An intracellular H2O2-responsive AIEgen for the peroxidase- mediated selective imaging and inhibition of inflammatory cells.Angew. Chem. Int. Ed.2018,57, 3123−3127..
Zhang, L.; Zhao, Y.; Kexin Li; Yu, S.; Dong, R.; Ma, S.; Liu, H.; Xing, L.; Zhou, F. Bioinspired simultaneous regulation in fluorescence of AIEgen-embedded hydrogels.Soft Matter2023,19, 7093−7099..
Li, B.; He, T.; Shen, X.; Tang, D.; Yin, S. Fluorescent supramolecular polymers with aggregation induced emission properties.Polym. Chem.2019,10, 796−818..
Wu, C. H.; Nhien, P. Q.; Cuc, T. T. K.; Hue, B. T. B.; Lin, H. C. Designs and applications of multi-stimuli responsive FRET processes in AIEgen-functionalized and bi-fluorophoric supramolecular materials.Topics Curr. Chem.2023,381, 2..
Luo, J.; Xie, Z.; Lam, J. W.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole.Chem. Commun. 2001 , 1740−1741..
Mei, J.; Leung, N. L.; Kwok, R. T.; Lam, J. W.; Tang, B. Z. Aggregation-induced emission: together we shine, united we soar!Chem. Rev. 2015 ,115, 11718−11940..
Chen, J.; Law, C. C. W.; Lam, J. W. Y.; Dong, Y.; Lo, S. M. F.; Williams, I. D.; Zhu, D.; Tang, B. Z. Synthesis, light emission, nanoaggregation, and restricted intramolecular rotation of 1,1-substituted 2,3,4,5-tetraphenylsiloles.Chem. Mater.2003,15, 1535−1546..
Zhao, E.; Lam, J. W. Y.; Meng, L.; Hong, Y.; Deng, H.; Bai, G.; Huang, X.; Hao, J.; Tang, B. Z. Poly[(maleic anhydride)-alt-(vinyl acetate)]: a pure oxygenic nonconjugated macromolecule with strong light emission and solvatochromic effect.Macromolecules2015,48, 64−71..
Dou, X.; Zhou, Q.; Chen, X.; Tan, Y.; He, X.; Lu, P.; Sui, K.; Tang, B. Z.; Zhang, Y.; Yuan, W. Z. Clustering-triggered emission and persistent room temperature phosphorescence of sodium alginate.Biomacromolecules2018,19, 2014−2022..
Wang, Y.; Zhao, Z.; Yuan, W. Z. Intrinsic luminescence from nonaromatic biomolecules.ChemPlusChem2020,85, 1065−1080..
Xu, L.; Liang, X.; You, L.; Yang, Y.; Fen, G.; Gao, Y.; Cui, X. Temperature-sensitive poly(N-isopropylacrylamide)-chitosan hydrogel for fluorescence sensors in living cells and its antibacterial application.Int. J. Biol. Macromol.2021,189, 316−323..
Zhang, H.; Zhao, Z.; McGonigal, P. R.; Ye, R.; Liu, S.; Lam, J. W. Y.; Kwok, R. T. K.; Yuan, W. Z.; Xie, J.; Rogach, A. L.; Tang, B. Z. Clusterization-triggered emission: uncommon luminescence from common materials.Mater. Today2020,32, 275−292..
Yuan, W.; Zhang, Y. Nonconventional macromolecular luminogens with aggregation-induced emission characteristics.J. Polym. Sci., Part A: Polym. Chem.2017,55, 560−574..
Du, Y.; Xue, X.; Jiang, Q.; Huang, W.; Yang, H.; Jiang, L.; Jiang, B.; Komarneni, S. Tunable multicolor luminescence polyglycidol-acrylates: one-pot preparation and properties.ACS Appl. Polym. Mater.2023,5, 3817−3826..
Cao, H.; Li, B.; Jiang, X.; Zhu, X.; Kong, X. Z. Fluorescent linear polyurea based on toluene diisocyanate: easy preparation, broad emission and potential applications.Chem. Eng. J.2020,399, 125867..
Jiang, X.; Wang, S.; Kong, X. Z. Quenching mechanism of PEG emission by pyrimidines and their detections using PEG as fluorescent sensor.Chem. Eng. J.2023,468, 143617..
Sun, C.; Jiang, X.; Li, B.; Li, S.; Kong, X. Z. Fluorescence behavior and mechanisms of poly(ethylene glycol) and their applications in Fe3+and Cr6+detections, data encryption, and cell imaging.ACS Sustainable Chem. Eng.2021,9, 5166−5178..
Wang, S.; Jiang, X.; Sun, C.; Kong, X. Z. Full green detection of antibiotic tetracyclines using fluorescent poly(ethylene glycol) as the sensor and the mechanism study.ACS Biomater. Sci. Eng.2022,8, 3957−3968..
Jiang, X.; Wang, Q.; Li, B.; Li, S.; Kong, X. Z. Fluorescence behavior and emission mechanisms of poly(ethylene succinamide) and its applications in Fe3+detection and data encryption.Chinese J. Polym. Sci.2023,41, 129−142..
Wang, Q.; Li, B.; Cao, H.; Jiang, X.; Kong, X. Z. Aliphatic amide salt, a new type of luminogen: characterization, emission and biological applications.Chem. Eng. J.2020,388, 124182..
Li, S.; Pan, X.; Zhu, X.; Jiang, X.; Kong, X. Z. Uniform and fluorescent poly(urea-siloxane) microspheres: preparation and recyclable use as sensors for Cr6+and Fe3+detection.ACS Appl. Polym. Mater.2023,5, 3325−3337..
Li, L.; Li, S.; Cui, H.; Zhu, X.; Kong, X. Z. Phase transition and fluorescence emission of multiresponsive poly(ethylene glycol-co-siloxane) and its application for uric acid detection.ACS Appl. Polym. Mater.2023,5, 9413−9424..
Seuring, J.; Bayer, F. M.; Huber, K.; Agarwal, S. Upper critical solution temperature of poly(N-acryloyl glycinamide) in water: a concealed property.Macromolecules2012,45, 374−384..
Li, S.; Feng, S. High-sensitivity stimuli-responsive polysiloxane synthesizedviacatalyst-free aza-michael addition for ibuprofen loading and controlled release.RSC Adv.2016,6, 99414−99421..
Lian, L.; Wang, Q.; Duan, F.; Zhao, Y. Multi-tunable thermoresponsive behaviors of poly(amido thioether)s.Polym. Chem.2024,15, 83−96..
Zhou, C.; Chen, Y.; Huang, M.; Ling, Y.; Yang, L.; Zhao, G.; Chen, J. A new type of dual temperature sensitive triblock polymer (P(AM-co-AN)-b-PDMA-b-PNIPAM) and its self-assembly and gel behavior.New J. Chem.2021,45, 5925−5932..
Li, S.; Feng, L.; Lu, H.; Feng, S. From LCST to UCST: The phase separation behaviour of thermo-responsive polysiloxanes with the solubility parameters of solvents.New J. Chem.2017,41, 1997−2003..
Dong, X.; Cao, H.; Jiang, X.; Kong, X. Z.; Li, S. Phase transition and fluorescence emission characteristics of multi-responsive copolymer of oligo(ethylene glycol) methyl ether acrylate and methylacrylic acid.Acta Polymerica Sinica(in Chinese) 2019 ,50, 1314−1321..
Sun, B.; Li, S.; Jiang, X.; Zhu, X.; Kong, X. Z. Synthesis of post-modified poly(ester-amino) microspheresviaaza-Michael precipitation polymerization and its use for enzyme immobilization.Polym. Adv. Technol.2021,32, 1802−1812..
Pang, B.; Zhang, J.; Pang, M.; Zhao, P.; Yang, Z.; Feng, S.; Zhang, J. Design and preparation of a new polyurea-polysiloxane-polyether copolymer with a block soft segment prepared by utilizing aza-Michael addition reaction.Polym. Chem.2018,9, 869−877..
Li, S.; Yang, S.; Zhu, X.; Jiang, X.; Kong, X. Z. Easy preparation of superoleophobic membranes based on cellulose filter paper and their use for water-oil separation.Cellulose2019,26, 6813−6823..
Yıldız, M.; Demir, N.; Ünver, H.; Sahiner, N. Synthesis, characterization, and application of a novel water-soluble polyethyleneimine-based Schiff base colorimetric chemosensor for metal cations and biological activity.Sensor Actuat. B2017,252, 55−61..
Feng, K.; Li, S.; Feng, L.; Feng, S. Synthesis of thermo- and photo-responsive polysiloxanes with tunable phase separationviaaza-Michael addition.New J. Chem.2017,41, 14498−14504..
Jung, H.; Jeon, S.; Jo, D. H.; Huh, J.; Kim, S. H. Effect of crosslinking on the CO2adsorption of polyethyleneimine- impregnated sorbents.Chem. Eng. J.2017,307, 836−844..
Jiang, X.; Zhu, X.; Arnold, A. A.; Kong, X. Z.; Claverie, J. P. Polyurea structure characterization by HR-MAS NMR spectroscopy.Ind. Eng. Chem. Res.2017,56, 2993−2998..
Lin, Y. S.; Lin, C. H.; Lee, W. F. Investigation of the synthesis and properties of the copolymeric hydrogels based onN-isopropyl acrylamide and acrylamidoazobenzene.J. Polym. Res.2014,21, 364..
Wu, P.; Siesler, H. W. The assignment of overtone and combination bands in the near infrared spectrum of polyamide 11.J. Near Infrared Spectrosc.1999,7, 65−76..
Li, Z.; Hao, B.; Tang, Y.; Li, H.; Lee, T. C.; Feng, A.; Zhang, L.; Thang, S. H. Effect of end-groups on sulfobetaine homopolymers with the tunable upper critical solution temperature (UCST).Eur. Polym. J.2020,132, 109704..
Fan, Y.; Zhang, J.; Shi, M.; Li, D.; Lu, C.; Cao, X.; Peng, C.; Mignani, S.; Majoral, J. P.; Shi, X. Poly(amidoamine) dendrimer-coordinated copper(II) complexes as a theranostic nanoplatform for the radiotherapy-enhanced magnetic resonance imaging and chemotherapy of tumors and tumor metastasis.Nano Lett.2019,19, 1216−1226..
Wang, G.; Fu, L.; Walker, A.; Chen, X.; Lovejoy, D. B.; Hao, M.; Lee, A.; Chung, R.; Rizos, H.; Irvine, M.; Zheng, M.; Liu, X.; Lu, Y.; Shi, B. Label-free fluorescent poly(amidoamine) dendrimer for traceable and controlled drug delivery.Biomacromolecules2019,20, 2148−2158..
Zhou, Q.; Liu, Y.; Wu, Y.; Li, Z.; Li, Y.; Liu, M.; Qu, T.; Chen, C. Measurement of mercury with highly selective fluorescent chemoprobe by carbon dots and silver nanoparticles.Chemosphere2021,274, 129959..
50 Wang, S.; Li, H.; Huang, H.; Cao, X.; Chen, X.; Cao, D. Porous organic polymers as a platform for sensing applications.Chem. Soc. Rev.2022,51, 2031−2080..
Ehsani, M.; Soleymani, J.; Mohammadalizadeh, P.; Hasanzadeh, M.; Jouyban, A.; Khoubnasabjafari, M.; Vaez-Gharamaleki, Y. Low potential detection of doxorubicin using a sensitive electrochemical sensor based on glassy carbon electrode modified with silver nanoparticles-supported poly(chitosan): a new platform in pharmaceutical analysis.Microchem. J.2021,165, 106101..
Ansar, S. M.; Jiang, W.; Mudalige, T. Direct quantification of unencapsulated doxorubicin in liposomal doxorubicin formulations using capillary electrophoresis.Int. J. Pharmaceut.2018,549, 109−114..
Yang, M.; Yan, Y.; Liu, E.; Hu, X.; Hao, H.; Fan, J. Polyethyleneimine- functionalized carbon dots as a fluorescent probe for doxorubicin hydrochloride by an inner filter effect.Opt. Mater.2021,112, 110743..
Singh, T. A.; Sharma, V.; Thakur, N.; Tejwan, N.; Sharma, A.; Das, J. Selective and sensitive electrochemical detection of doxorubicin via a novel magnesium oxide/carbon dot nanocomposite based sensor.Inorg. Chem. Commun.2023,150, 110527..
Mi, G.; Shi, H.; Yang, M.; Wang, C.; Hao, H.; Fan, J. Efficient detection doxorubicin hydrochloride using CuInSe2@ZnS quantum dots and Ag nanoparticles.Spectrochim. Acta A2020,241, 118673..
0
浏览量
44
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构