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Abstract   Bridging the  gap between the  computation of  mechanical  properties  and the  chemical  structure  of  elastomers  is  a  long-standing

challenge. To fill the gap, we create a raw dataset and build predictive models for Young’s modulus, tensile strength, and elongation at break of

polyurethane elastomers (PUEs). We then construct a benchmark dataset with 50.4% samples remained from the raw dataset which suffers from

the  intrinsic  diversity  problem,  through  a  newly  proposed  recursive  data  elimination  protocol.  The  coefficients  of  determination  (R2s)  from

predictions are improved from 0.73−0.78 to 0.85−0.91 based on the raw and the benchmark datasets. The fitting of stress-strain curves using the

machine learning model shows a slightly better performance than that for one of the well-performed constitutive models (e.g., the Khiêm-Itskov

model). It confirmed that the black-box machine learning models are feasible to bridge the gap between the mechanical properties of PUEs and

multiple factors for their chemical structures, composition, processing, and measurement settings. While accurate prediction for these curves is

still a challenge. We release the raw dataset and the most representative benchmark dataset so far to call for more attention to tackle the long-

standing gap problem.
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INTRODUCTION

Density, Poisson ratio, Young’s modulus, constitutive models,
etc.  are  essential  inputs  for  finite  element  analysis  and
computer-aided  design  &  engineering,  such  as  commercial
software Abaqus, Comsol Multiphysics, Ansys Fluent, etc., in the
computation of mechanical properties for polymer materials.  It
is  a  great  and  long-standing  challenge  to  bridge  the  gap
between these inputs with molecular descriptors, especially for
polymeric  elastomers.  Intensive  efforts  to  bridge  the  gap  are
impeded by many factors, including the unclear understanding
of  hyper-elastic  properties  at  the  molecular  level,  lacking  of
parameters to quantify the deformation and energy dissipation
at  multi-scales,  the  absence  of  a  benchmark  dataset  that  can
support  the  development  of  new  methods,  and  the  inherent
limitations  of  the  human  brain  to  find  patterns  from  multiple
non-linear,  non-monotonous  and  non-orthogonal  correlations.

The  emergence  of  the  data-driven  method, i.e.,  machine
learning  (ML),  provides  a  new  perspective  to  facilitate  the
calculation  and  prediction  of  the  mechanical  properties  of
polymeric  elastomer  materials.  ML  has  shown  significant
advantages in  the quantification of  separation and mechanical
properties  for  variant  polymeric  membranes,[1−3] the
optimization  of  compositions  for  epoxy  resins,[4] inverse
molecular  design  for  given  properties  including  proton
conductivity,  methanol  permeability,  tensile  modulus, etc.,
properties.[5] Polyurethane  elastomers  (PUEs)  can  be  a  good
model  system that  has  widely  distributed and steadily  tunable
mechanical  properties  and  is  believed  to  have  strong
correlations  between structure  and mechanical  properties.  It  is
interesting  to  know  whether  applying  ML  study  is  a  feasible
method to bridge the gap.

PUEs are a class of elastomers that have broad applications,
massively used in structural and infrastructural engineering,[6]

electromechanical  actuators,[7] biomedical  packages  and
devices,[8,9] electronics  and  sensors,[10,11] and  so  forth.  They
are  normally  linear  multi-block  copolymers,  composed  of
hard  segments  made  up  of  diisocyanate  (DI)  with  optional
chain extender (CE, e.g., diol, diamine, and thiol), and soft seg-
ments with polyol (PO). Hard segments (HS) normally have ur-
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ethane  (―NHCOO―),  urea  (―NHCONH―)  or  thiourethane
(―NHCOS―) groups and soft segments (SS) contain carbon-
ate  (―OCOO―),  ester  (―COO―)  or  ether  (—O—)  connec-
tions.  The  regulation  of  the  content  of  hard  segments  (CHS)
and  the  fuzzy  soft-hard  interface  is  crucial  to  making  PUEs
have  plastic  and  elastic  mechanical  properties.[12] Important
properties  including  Young’s  modulus  (YM,  MPa),  tensile
strength  (TS,  MPa),  and  elongation  at  break  (EB,  %),  can  be
steadily  extracted  from  uniaxial  tensile  stress-strain  curves.
Theoretically,  there  are  dozens  of  constitutive  models  have
been proposed to quantify the stress-strain curves.[13,14] In our
previous work,[13] we found three models that can be used to
quantitatively  fit  the  stress-strain  curves  of  most  PUEs.  The
distributions  of  model  parameters  through  well-fitting  are
non-Gaussian,  which  reflect  structural  dispersity.  In  addition,
the distributions of mechanical properties are broad and non-
Gaussian,  indicating  the  dispersive  structure-properties  cor-
relations of PUEs. Establishing datasets with conserved struc-
ture-property correlations, e.g. benchmark dataset, can aid in
the development  of  high-performance materials.  Benchmark
datasets  can  be  established  by  either  filling  or  removing
sparse spaces in the dataset.  By using the filling method, Ma
and Luo et al.[15] built a polymer benchmark dataset based on
the PolyInfo database.[16] The newly generated dataset signi-
ficantly populates regions where PolyInfo data are sparse, and
intrinsic properties of polymers including density, glass trans-
ition  temperature,  melting  temperature,  and  dielectric  con-
stant can be accurately predicted.  In our work,  it  is  expected
to construct a benchmark dataset for PUEs which can provide
conserved structure-properties correlations.

The core to bridge the gap is the quantitative composition-
processing-structure-mechanical  properties  relationship,
where  the  structure  contains  the  chemical  structure  of
monomers  and  the  aggregated  structure.  It  can  be  deter-
mined  from  a  set  of  experimental  techniques,  typically  mass
spectrum,  nuclear  magnetic  resonance,  infrared  spectrum,
etc.,  to  characterize  chemical  structures,  and  atomic  force
microscopy, small- and wide-angle scattering, electron micro-
scopy, etc.,  to  analyze  the  aggregation  structure.  For  PUEs,
their inherent structural characteristics include the degree of
hydrogen  bonding  attributed  to  the  existence  of ―NHCO―
groups,  the  microphase  separation  between  hard  and  soft
segments,  and  the  distribution  of  crystallite.  The  degree  of
hydrogen  bonding  is  usually  qualitatively  measured  by  the
Fourier  transform  infrared  spectroscopy.[17,18] Similarly,  the
quantitative  parameters  in  the  description  of  microphase-
separated  morphologies  or  crystallite,  such  as  the  average
size  and  fraction  of  domains,  the  phase  interfaces, etc.,  are
isolated from physical  studies  and material  reports.  The mis-
sing  of  clear  structure  information  is  the  main  challenge  in
the  construction  of  quantitative  composition-processing-
structure-mechanical  properties  relationship  for  PUEs  and  is
ubiquitous  for  other  polymer  materials.  While  owing  to
strong correlations between chemical structure and mechan-
ical properties for PUEs, the construction of a quantitative che-
mical  structure-composition-processing-mechanical  proper-
ties relationship (CCPMr) using ML is practicable.

Here, the predictive targets are the three mechanical prop-
erties:  YM,  TS,  EB,  as  well  as  the  original  stress-strain  curves

from uniaxial tensile tests for PUEs. The contents are ordered
in (1) perform exhaustive data mining from accessible sources
focusing on the mechanical properties for PUEs; (2) digitalize
the  chemical  structure,  processing,  and  measurement  set-
tings  through  feature  engineering;  (3)  build  predictive  mod-
els for the mechanical properties distributed in the raw data-
set;  (4)  construct  a  benchmark  dataset  for  PUEs  that  have  a
conserved CCPMr; (5) predict and fit the stress-strain curves.

DATA AND METHODS

Workflow
A brief introduction to the workflow is shown in Fig. 1. Section 1
is to create an exhaustive raw dataset through data mining from
diverse  sources,  mainly  from  academic  literature  about  the
synthesis,  characterization,  and  mechanical  measurements  for
PUEs. Sections 2 and 3 are aimed to build a set of features that
bear the most informed correlations with mechanical properties
through  feature  engineering,  then  interactively  and  iteratively
construct and validate predictive models by using the extreme
gradient boosting tree (XGB) algorithm.[19] Schematic diagrams
of the predictions for three mechanical properties by using the
XGB algorithm in section 6 are shown in section 7. Based on the
set of most informed features, the target of sections 4 and 5 is to
construct  a  benchmark  dataset  that  has  a  consistent  and
conserved  CCPMr,  though  a  newly  proposed  recursive  data
elimination  (RDE)  protocol  integrated  with  multiple  ML
algorithms  as  shown  in  section  6.  The  predictions  of  three
mechanical  properties  in  the  benchmark  dataset  are  also
presented in section 7.  Further,  the stress-strain curves in  both
raw and benchmark datasets are predicted and fitted by using
XGB, as shown in sections 6 and 7.

Feature Engineering
Features  to  describe  the  chemical  structure,  interaction
between hard and soft segments, composition, processing, and
measurements  are  presented  here.  Chemical  structures  are
encoded  using  the  Simplified  Molecular-Input  Line-Entry
System (SMILES), and a set of features are calculated using RDKit
2021.[20] Features  include  constitutional  (count  of  atoms,
groups,  and  bonds),  connective  (Chi  indices),  topological
(BalabanJ), MOE-type (such as EState_VSA series), and molecular
properties  descriptors  (TPSA).  They  constitute  200  features  for
each monomer,  hard or soft segment.  Then the corresponding
features  for  a  PUE  are  calculated  through  the  molar  weighted
average according to the group additive principle.[21]

The interaction between hard (HS)  and soft  segments  (SS)
is  expressed  by  the  Flory-Huggins  interaction χ,  computed
through

χ =
(δHS − δSS)2Vm

RT
(1)

where δHS and δSS are  the Hildebrand solubility  parameters  for
HS and SS, Vm is the molar volume of the equivalent monomer
for  PUE, R is  the  gas  constant,  and T is  the  measured
temperature. The Hildebrand solubility is the square root of the
cohesive  energy  density  (CED),  and  the  CED  is  calculated
following  the  Fedors  method[22] based  on  the  group  additive
principle.[23] The  composition  of  PUE  consists  of  molecular
weight (MW) of PO, mass fraction of HS (CHS), the molar ratio of
CE (nCE), and the isocyanate index (IsoIndex), which is the molar
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ratio of the ―NCO and the ―OH groups.
For  processing  settings,  PUEs  are  polymerized  through

either  one-step  or  two-step  strategies  at  up  to  two  reaction
temperatures (Tr1, Tr2), and tuned by the time for solvent ad-
dition  (including  ts0,  ts1  and  ts2,  which  represents  that  no
solvent is added, the solvent is added at the 1st step, and the
solvent is added at the 2nd step, respectively) and the time for
catalyst addition (including tc0, tc1 and tc2, which represents
that no catalyst is added, the catalyst is added at the 1st step,
and the catalyst is added at the 2nd step, respectively). By de-
fault,  good  solvents  are  used  in  the  polymerization  process
such  as  dimethylformamide,  tetrahydrofuran,  dimethylacet-
amide, and catalysts generally are tin compounds. Hence, the
chemical  structures  of  solvent  and  catalyst  are  not  con-
sidered in this work. The forming methods (FM) of the spline
can be grouped into solution casting, melt casting, hot press-
ing,  spin-casting,  and  microinjection.  The  measurements  re-
cord  the  shape  (dumbbell  or  rectangle-shaped),  the  gauge
length  (mm),  and  the  cross-sectional  area  (CSArea,  mm2)  of
splines,  associated  with  the  elongation  rate  (mm/min)  and
the strain rate (the elongation rate normalized by the gauge
length, min−1) in the tensile test. Totally 629 features are gen-
erated to record chemical structure, interaction, composition,
processing, and measurements.

Based  on  the  raw  dataset,  the  collection  of  features  is
filtered using the Lsig criteria[1,5] at 0.90 confidence level to re-

move  insufficient  or  redundant  features.  The  remaining  204
features are further experienced a non-linear and non-mono-
tonous  recursive  feature  elimination[24] using  the  XGB  al-
gorithm  through  5-fold  cross-validation.  In  the  cross-valida-
tion,  all  data  are  randomly  split  into  5  sets,  4  sets  are  as-
sembled to be the train set (80%) and the remaining one is re-
garded as the test set (20%). It repeats 5 times till each sample
is  tested  once.  The  predicted  values  are  from  the  test  set
which is  unseen in  the construction of  the predictive model.
The  optimal  combination  to  predict  mechanical  properties
(YM,  TS,  and  EB)  has  20  features,  and  the  detail  is  listed  in
Table  S1  (in  the  electronic  supplementary  informmation,
ESI).

Construction of Predictive Models
Predictive  models  of  three  mechanical  properties  and  stress-
strain  curves  are  constructed  by  using  the  XGB  algorithm
(details  can  be  seen  in  ESI).  The  hyper-parameters  for  these
models  are  optimized  under  Bayesian  inference  and  the  final
model  is  to  achieve  minimized  mean  squared  error  in  5-fold
cross-validation. The models are constructed following previous
strategies  for  the  predictions  of  discrete  points  of  mechanical
properties,  and  continuous  stress-strain  curves.[2,3] To  evaluate
the  performance  of  the  predictive  models,  two  metrics
including  the  coefficient  of  determination  (R2)  and  the  root
mean squared error (RMSE) is calculated. They are defined as:
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Fig. 1    Workflow to predict the mechanical properties of PUEs. Sections from 1 to 7 cover data mining, feature and data engineering,
tuning algorithms, and construction of predictive models.
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R2 = 1 −
∑N

i=1 (yi − ŷi)2
∑N

i=1 (yi − yi)2
(2)

RMSE = [ 1
N
∑N

i=1
(yi − ŷi)2]1/2

(3)

yi ŷi
ȳi

where  and  are  the  experimental  value  and  the  predicted
value associated with the ith sample,  is the average value of all
samples, and N is the number of all samples.

Recursive Data Elimination
Since PUEs are developed for diverse applications in the form of
plastic  and  elastic  products,  the  chemical  structures,
composition,  processing  methods,  and  mechanical  properties
are  broadly  distributed.  Here  we  propose  a  ranking-based
recursive  data  elimination  (RDE)  protocol  to  construct  a
benchmark  dataset  by  using five  machine learning algorithms,
i.e.,  XGB,  random  forest  (RF),[25] support  vector  regression
(SVR),[26] neural network (NN),[27] k-nearest neighbors regression
(k-NN).[28,29] The  resulted  benchmark  dataset  may  share  a
consistent  and  conserved  chemical  structure-composition-
processing-mechanical properties relationship (CCPMr) with the
enclosure  of  as  many  samples  as  possible.  The  RDE  procedure
utilizes the fixed combination of features and hyper-parameters
(Table S2 in ESI) trained from the raw dataset. Then the samples
with  large  weighted  predictive  error  scores  (WPES)  are
recursively  dropped,  and  the  drop-off  ratio  is  fixed  at  5%  that
allowing  20  iterations  to  obtain  a  coherent  CCPMr  for  the
remained samples. Here, the WPES is defined as:

WPES = ∑3

i
Nindex,i ×

REi − REi

REi

(4)

REiwhere Nindex,i,  REi,  and  are  the  index  number  of  the  sorted
relative predictive error in ascending order, the relative error of
the  prediction,  and the  mean of  relative  error  of  the  remained
samples,  respectively.  The  subscript i represents  the ith

mechanical  properties,  which  include  YM,  TS,  and  EB.  To
eliminate  the  impact  of  the  combination  of  samples,  100
replicates with different random seeds for data split in the RDE
procedure are computed.  Then the RDE score for  each sample
can be labeled. It has a max of 20 which means the sample has
the  most  conserved  CCPMr  and  is  kept  at  the  last  iteration  of
drop-off,  and  the  min  of  1  means  the  sample  has  the  most
distinctive CCPMr and is dropped at the first iteration. From the
convergence  of  5  machine  learning  algorithms,  the  candidate
benchmark dataset is determined based on the truncation of a
given RDE score.

RESULTS AND DISCUSSION

Predictive Models for Mechanical Properties
The 20 optimal  features  listed in  Table  S1 (in  ESI)  are  obtained
through  feature  engineering.  They  cover  information  on  the
chemical  structure,  interaction  between  soft  and  hard
segments,  composition,  and  experimental  settings,  which  are
the  optimal  combination  of  all  features.  The  predicted
mechanical  properties  in  the  test  set  from  the  5-fold  cross-
validation  using  these  20  selected  features  against  the
corresponding experimental values are shown in Fig. 2. It can be
seen  that  the  predicted  values  are  evenly  distributed  on  both
sides of the experimental values. R2 is 0.73, 0.78, and 0.76 in the
prediction  of  YM,  TS,  and  EB,  and  their  corresponding  RMSE  is

74.8 MPa, 9.04 MPa, and 217%, respectively. It is noted that the
RMSE for the three properties is slightly large, but these values
are  within  an  acceptable  range  compared  with  the  mean  and
standard  deviation  (Std)  of  the  experimental  values  of
properties  (Table  1).  Furthermore, R2 in  the  test  set  is  higher
than  0.70  which  can  be  considered  to  obtain  meaningful
predictions  from  the  machine  learning  model  based  on  a
statistical benchmark.[30] Hence, it can be concluded that all the
models  are accurate to deliver  robust  predictions for  the three
mechanical  properties  of  PUEs  in  the  raw  dataset,  suggesting
that  constructed  models  can  help  researchers  to  design  new
PUE with high performance through virtual experiments.

We then investigate  the  feature  importance to  explore  in-
formation for 20 selected features. The rankings of feature im-
portance based on the raw dataset are shown in Figs.  S1(a)–
S1(c) (in ESI), presented by the gain value calculated using the
XGB algorithm,  the Pearson (RP)  and the Spearman (RSp)  cor-
relation  coefficients  between  features  and  mechanical  prop-
erties.  The  logarithm  of  molecular  weight  for  the  polyol
(log_PO_MW)  is  negatively  correlated  with  YM  because  the
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Fig. 2    Performance of predictive models for YM (a), TS (b), and EB (c)
based on the raw dataset. The light orange dash lines in the plot are
the  upper  and  the  lower  bounds  at  95%  confidence  level.  The
triangles  label  typical  samples  with  large predictive  errors,  and their
names are from original reports.
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increase  in  the  molecular  weight  of  polyol  normally  causes
the decrease of CHS,[31] and the latter is dominant for YM. The
chemical  structure  and  the  corresponding  electron  distribu-
tion over van der Waals surface[32] (SS_VSA_Estate) in the soft
segment  is  negatively  and  strongly  correlated  with  YM,  TS,
and  EB,  which  indicates  the  enclosure  of  such  as  aromatic
ring, conjugated groups, etc., in the soft segment are deleteri-
ous  for  all  three  mechanical  properties  of  PUEs.[33] The
SS_TPSA_N has a strong positive correlation with YM and TS,
suggesting  that  the  enrichment  of  polar  groups  in  the  soft
segment can strengthen the hard-soft segmental interface[34]

and hereby enhance the mechanical properties of PUEs. Simi-
larly,  improving SS_PEOE_VSA,[35] i.e.,  the long-range electro-
static  attraction  in  the  soft  segment,  allows  the  tolerance  of
large  deformation,  which  is  the  most  important  feature  that
positively correlates with EB. The molar volume (log_Vm) and
the cohesive energy density (CED) are obtained based on the
group  additive  principle,  which  plays  an  important  role  in
predicting  YM  and  TS.  Especially,  the  negative  correlation  of
log_Vm  versus  YM  and  TS  is  owing  to  the  packing  of  larger
monomers  normally  leading  to  a  higher  fraction  of  free
volume  and  loose  aggregated  structures.  However,  on  the

contrary,  CED  tends  to  maintain  the  integrity  of  domains.  It
positively correlates with YM and TS,  satisfying its role in the
correlation  with  the  glass  transition  temperature  for  linear
PUEs[36] and  the  mechanical  properties  in  a  small  PUE
dataset.[37] Experimental  settings-based  features  are  crucial
but difficult to set up exact correlations over reports from dif-
ferent  groups,  making  the  ranking  in  feature  importance  off
the top location. Overall, for features listed in Table S1 (in ESI),
those  chemical  structure-,  interaction-,  composition-  and  ex-
perimental  settings-based  features  are  not  highly  correlated
with the three properties but are vital for the prediction of the
mechanical properties.[38]

We further analyze some individual cases from these “poor”
predictions  (with  errors  outside  95%  confidence  level)  as
marked  in Fig.  2.  The  samples  with  large  predictive  errors,
such  as  “PU-0”,[18] “2K  PBS  30%”[39] and  “1K  PBS  30%”[39] for
YM,  “IP1020”,[40] “PDMS-TDI”[41] and  “PDMS-HDI”[41] for  TS,
“P2-20”,[42] “L2-40”[42] and  “MPP3”[43] for  EB,  are  labeled.  To
make  clear  the  change  of  a  single  feature  derived  from  the
original  records  in  the  academic  literature,  other  samples  in
the raw dataset with controlled variables (i.e., different in only
one  feature)  in  chemical  structure,  composition,  processing,
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(b), and content of hard segment (CHS) (c, d). Differences in precursors in panels (a) and (b) are described by using calculated features
log_Vm  and  CED,  which  are  the  most  important  features  for  the  predictions  of  YM  and  TS.  Samples  with  the  same  color  (controlled
samples)  can  be  compared  with  each  other  in  each  panel,  and  the  mark  “O”  and  “X”  represents  well-  and  poorly-predicted  samples,
respectively.

Table 1    Summary of predictive models for three mechanical properties of samples in the raw and benchmark datasets.

Property
Raw dataset (N=643) Benchmark dataset (N=326)

Mean Std RMSE R2 Mean Std RMSE R2

YM (MPa) 57.2 118 74.8 0.73 67.3 101 60.5 0.89
TS (MPa) 23.5 15.4 9.04 0.78 26.4 14.8 6.80 0.91

EB (%) 629 373 217 0.76 624 306 131 0.85

426 Ding, F. et al. / Chinese J. Polym. Sci. 2023, 41, 422–431  

 
https://doi.org/10.1007/s10118-022-2838-6

 

https://doi.org/10.1007/s10118-022-2838-6


or  measurement  are  also  enclosed. Figs.  3(a)  and  3(b)  show
the poorly predicted samples are out of the linearity or mono-
tonicity  in  the  set  of  controlled  samples.  It  may  be  due  to
poorly predicted samples having strong phase mixing in mor-
phology,  which  is  different  from  other  controlled
samples.[40,41] Fig.  3(c) shows the break of common sense for
PUEs, where a normally higher CHS leads to stronger YM and
TS.  This  is  probably  caused  by  the  crystallization  of  soft  seg-
ment  with  regular  chemical  structure  at  low  hard  segment
content.[39] While  the  EB  versus  CHS  for  “L2-40”,  “P2-20”  and
“MPP3”  seem  reasonable  in  the  controlled  samples  (Fig.  3d),
other  unrecorded  aspects  such  as  the  defects  in  testing
samples  may  overwhelm  such  consistency.[44] Based  on  the
above  discussion,  it  can  be  concluded  that  the  morphology
and  mechanical  properties  of  a  small  number  of  samples  in
the raw dataset are deviated from those of other highly simil-
ar samples. It  is also confirmed that CCPMr of samples in the
raw dataset is highly dispersed.

On  the  other  hand,  the  three  mechanical  properties  of
PUEs  in  the  raw  dataset  are  broadly  distributed  up  to  four
magnitudes, which is slightly broader than those from our re-
cent  work  (Fig.  S2  in  ESI).[13] The  distributions  of  mechanical
properties  deviate  from  the  Gaussian  distribution,  reflecting
the diversity in the structure-property correlations.[44,45] Gen-

erally, most PUE materials share an intrinsic conserved CCPMr.
However,  since  the  diversity  of  the  raw  dataset,  a  set  of
samples with intrinsic conserved CCPMr are difficult to obtain
by  studying  relations  between  a  single  feature  and  proper-
ties. Alternatively, we can build a benchmark dataset with in-
trinsic conserved CCPMr driven by many coupled features us-
ing implicit machine learning.

Construction of Benchmark Dataset
The results from the recursive data elimination (RDE) procedure
are shown in Fig. 4 and Fig. S3 (in ESI). In principle, the average
R2 increases with the reduction of samples, where samples with
more  conserved  CCPMr  remain.  Most  of  these  profiles  in  the
prediction of YM, TS or EB, using one of the XGB, RF, SVR, NN or
k-NN  algorithms  follow  this  expectation.  While  the  standard
deviations  along  the  recursive  drop-off  may  fluctuate,
suggesting that the remained samples still hold some degree of
diversity.  The  evaluation  of  the  RDE  score  against  the  sorted
samples by the five ML algorithms shows an almost overlapped
decay  curve  (Fig.  4d).  These  curves  have  a  coincident  cross  at
~300  samples  with  an  RDE  score  of  15,  we  then  pick  this  RDE
score to select candidates for the benchmark dataset. As shown
in Fig. 4(e), we label each sample that is retained by each of the
5 machine learning algorithms, then count the number of well-
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Fig. 4    Distribution of R2 in the RDE protocol using the XGB algorithm for YM (a), TS (b), and EB (c); RDE score for sorted samples using
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predicted algorithms. From the intersection of these labels, the
number  of  samples  as  a  function  of  the  number  of  well-
predicted  algorithms  is  shown  in Fig.  4(f).  With  the  number  of
algorithms  increasing  from  1  to  5,  the  number  of  satisfied
samples  decreases  from  409  to  206.  We  then  select  the
conservancy based on 3 algorithms, which are close to most of
the level-off points of R2 in RDE, and achieve a balance between
the  coverage  and  the  convergency,  as  the  final  criteria  for  the
benchmark  dataset.  It  gets  326  out  of  the  643  samples  in  the
raw dataset (remained 50.4%).

In  the  benchmark  dataset,  the  chemical  structures  of  326
samples  cover  20  different  polyols  and  66  hard  segments
composed of 13 diisocyanates and 39 chain extenders. To ex-
plore  the  differences  in  chemical  structures  between  the
benchmark  and  raw  datasets,  we  calculate  the  similarity
between paired chemical  structures  of  PUEs  using Euclidean
distance based on the MACCS fingerprint (Fig. S4 in ESI).[46,47]

The  distributions  are  very  similar,  and  only  tiny  differences
can  be  seen.  This  indicates  that  the  benchmark  dataset  may
share  a  consistent  and  conserved  CCPMr  with  the  raw  data-
set. Further, we compare the distribution of three mechanical
properties,  as  well  as  the  Pearson  correlations  (RP)  between
features and properties, between the benchmark dataset and
the raw dataset. Compared with broad non-Gaussian distribu-
tions  of  YM,  TS,  and  EB  in  the  raw  dataset,  these  properties
in  the  benchmark  dataset  have  slightly  narrow  and  more
Gaussian-like distributions, as shown in Fig. S2 (in ESI). A com-
parison  of RP between  features  and  the  mechanical  proper-
ties (as shown in Fig. 5) for the raw and the benchmark data-
sets should provide more tuition. It can be found that almost
all  features  get  stronger  correlations  for  YM  and  TS  in  the
benchmark  dataset.  These  results  support  that  the  bench-
mark  dataset  obtained  based  on  the  RDE  protocol  has  more
conserved CCPMr than the raw dataset.  In  addition,  it  is  also
noteworthy  that  the RP between  features  and  EB  for  the
benchmark  dataset  did  not  increase  or  even  decrease,  com-
pared with the RP for the raw dataset. This may be due to the
inherent  non-linear,  non-monotonous,  and  non-orthogonal
correlations between these features and EB. A similar correla-
tion  has  been  reported  for  Acrylonitrile-Butadiene-Styrene
(ABS)  resins,  where  the  group  additive  principle[21] is  fol-

lowed by YM and TS but is deviated by EB.[48]

To further investigate whether the benchmark dataset has
an  intrinsic  conserved  CCPMr,  here  we  construct  predictive
models  for  YM,  TS,  and EB based on the benchmark dataset.
The predictions for these three properties are shown in Fig. 6,
and  the  comparison  with  those  for  the  raw  dataset  is  sum-
marized  in Table  1.  It  is  found  that  the  predicted  values  are
more  closely  distributed  on  both  sides  of  the  experimental
values.  The  predicted R2 is  significantly  improved  while  the
RMSE  is  declined  through  the  RDE  protocol.  In  500  repeats
with different random seeds in the splitting of data for the 5-
fold  cross-validation,  the R2s  from  the  train  and  test  sets  are
also  distributed  in  conserved  regions  with  reasonable  in-
between  differences.  It  verifies  the  initial  prospection  of  the
RDE  to  screen  out  a  benchmark  dataset  that  has  an  intrinsic
conserved CCPMr.

Predicting Stress-Strain Curves
The  predictions  for  YM,  TS,  and  EB  show  sufficient  accuracy
and  robustness,  we  then  challenge  the  prediction  of  the
stress-strain curves in the benchmark dataset and raw dataset.
The 156 curves in the benchmark dataset (BC) and 386 curves
in the raw dataset (including curves in the “BC” and “Not BC”)
are shown in Fig. 7(a). The curves in the benchmark and the raw
datasets  share  similar  profiles  and  distribution  regions,  with
clear  signals  for  yield,  necking,  strain  hardening, etc.  The
prediction  of  these  curves  using  the  21  features  (20  features
used above and the strain) and the distribution of R2 is shown in
Fig. 7(b). It can be seen that the fraction of samples with high R2

is  significantly  improved  from  the  raw  to  the  benchmark
dataset. For example, the fraction of samples with R2 above 0.90
increases from 14.8% to 30.1%. It also confirms that the CCPMr
in  the  benchmark  dataset  is  more  conserved  than  that  in  the
raw  dataset.  In  our  previous  work,  we  found  that  the  Khiêm-
Itskov  (KI)[52] constitutive  model  can  well  fit  the  stress-strain
curves  for  PUEs.[13] From  the  train  set  of  the  curves,  the
prediction  becomes  the  fitting  problem.  The  fitting  using  the
XGB  algorithm  gets  an  average R2 of  0.98,  which  is  slightly
higher than the fitting using the KI model with an average R2 of
0.96. It strongly suggests that applying an ML study is feasible to
bridge the gap between the mechanical properties of PUEs and
their  chemical  structures,  composition,  processing,  and
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measurements.  However,  accurate  prediction  for  these  stress-

strain curves is still a challenge, even for those PUE samples with

high predicted R2 (as  shown in Figs.  7c−7e).  Hence,  we release

the raw dataset and the most representative benchmark dataset
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covering the detailed experimental  and calculated information
and  call  for  more  interdisciplinary  efforts  to  tackle  the  long-
standing gap problem. In addition,  these datasets can serve as
the  public  dataset  to  facilitate  the  development  of  polymer
informatics or finite element analysis.

CONCLUSIONS

In  this  work,  the  broadly  distributed  mechanical  properties  of
polyurethane  elastomers  (PUEs)  are  investigated.  It  is  a  good
model  system  to  tackle  the  long-standing  challenge  to  bridge
the  gap  between  the  mechanical  properties  and  molecular
descriptors.  Suffering  from  the  diverse  CCPMr  and  the  non-
Gaussian  distributions  for  the  mechanical  properties,  we
propose  a  recursive  data  elimination  protocol  construct  a
benchmark  dataset  from  a  raw  dataset  with  50.4%  samples
remained.  The R2s  for  the  predictions  of  YM,  TS,  and  EB  are
improved  from  0.73−0.78  for  the  raw  dataset  to  0.85−0.91  for
the  benchmark  dataset.  The  result  shows  that  samples  in  the
benchmark  dataset  have  an  intrinsic  conserved  CCPMr,  and
their  distributions  of  mechanical  properties  and  profiles  of
stress-strain  curves  are  similar  to  those  in  the  raw  dataset.
Furthermore, the fitting of stress-strain curves utilizing machine
learning  is  more  accurate  and  more  robust  than  that  using  a
well-performed constitutive model, i.e., Khiêm-Itskov model. The
challenge  to  bridge  chemical  structures,  interaction,
composition,  processing,  and  measurement  with  mechanical
curves  at  the  macroscale  needs  further  effort,  accompanying
this  work  we  release  the  raw  dataset  and  the  most
representative  benchmark  dataset  to  data  with  detailed
information in this work to call for more attention to tackle this
long-standing  gap  problem.  It  is  worth  noting  that  the
sequence  of  monomers,  the  aggregated  structures,  and  even
the after-treatment process  may also influence the mechanical
properties  of  PUEs,  which  were  not  considered  in  the  present
study.  Therefore,  a  more  accurate  model  considering  the
molecular  detail,  phase  morphology  and  processing  method
will be the focus of future studies for polymer systems.
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