

FOLLOWUS
a.State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
b.University of Chinese Academy of Sciences, Beijing 100049, China
gwhuang@mail.ipc.ac.cn
Received:27 November 2025,
Accepted:25 December 2025,
Online First:06 February 2026,
Published:15 March 2026
Scan QR Code
Li, M.; Huang, G. W.; Li, N.; Liu, Y.; Li, S. Z.; Huang, Y. Highly elastic composite aerogel based on functionalized cotton fibers for strain sensing at cryogenic temperature. Chinese J. Polym. Sci. 2026, 44, 706–718
Meng Li, Gui-Wen Huang, Na Li, et al. Highly Elastic Composite Aerogel based on Functionalized Cotton Fibers for Strain Sensing at Cryogenic Temperature[J]. Chinese Journal of Polymer Science, 2026, 44(3): 706-718.
Li, M.; Huang, G. W.; Li, N.; Liu, Y.; Li, S. Z.; Huang, Y. Highly elastic composite aerogel based on functionalized cotton fibers for strain sensing at cryogenic temperature. Chinese J. Polym. Sci. 2026, 44, 706–718 DOI: 10.1007/s10118-025-3549-6.
Meng Li, Gui-Wen Huang, Na Li, et al. Highly Elastic Composite Aerogel based on Functionalized Cotton Fibers for Strain Sensing at Cryogenic Temperature[J]. Chinese Journal of Polymer Science, 2026, 44(3): 706-718. DOI: 10.1007/s10118-025-3549-6.
Cotton fiber-based functional aerogel is prepared and shows excellent elasticity and steady resistance value evolution at cryogenic temperature (77 K)
enabling great potential for being used as strain sensor in low temperature environment.
With the development of electronic technologies
piezoresistive sensors have attracted increasing attention. Among them
aerogels with high elasticity
as a type of three-dimensional porous material
are widely used in the field of piezoresistive sensors. Nowadays
with the extension of science and technology areas
fields involving low-temperature environments have emerged
which has led to an increasing demand for piezoresistive sensors that can serve at cryogenic temperatures. However
most studies on aerogels have only focused on their sensing performance at room temperature
and there is a lack of research on aerogel sensors that can work at low temperatures. In this work
piezoresistive sensors based on cotton fibers were proposed for applications at 77 K. As one of the most important natural polymers
cotton fibers have the ability to maintain elasticity at very low temperatures. Cotton fiber-based aerogels with high elasticity and cyclic stability were obtained by controlling the freeze-casting parameters and size distribution of cotton fibers
and they showed excellent pressure sensing properties
including a wide sensing range and remarkable long-term stability. This study bridges the gap in cryogenic sensing materials and provides insights into microstructure-property relationships
advancing applications in aerospace and cryogenic engineering.
Zang, Y. P.; Zhang, F. J.; Di, C. A.; Zhu, D. B. Advances of flexible pressure sensors toward artificial intelligence and health care applications. Mater. Horiz. 2015 , 2 , 140−156..
Ma, S. D.; Wu, Y. T.; Tang, J.; Zhang, Y. M.; Yan, T.; Pan, Z. J. A multi-model, large-range flexible strain sensor based on carbonized silk habotai for human health monitoring. Chinese J. Polym. Sci. 2023 , 8 , 1238−1249..
Hong, D.; Li, G.; Wei, X.; Sun, C.; Shi, Z.; Yang, Q.; Xiong, C. Electronic skin using cellulose nanofiber/hollow polypyrrole microspheres with good sensitivity and vapor permeability. Cellulose 2024 , 17 , 10375−10388..
Zhang, J.; Lian, S.; Zhu, F.; Cao, G.; Ma, H.; Wang, B.; Wu, H.; Zhao, Z.; Liu, Z.; Wang, G. High-performance strain sensors using flexible micro-porous 3D-graphene with conductive network synergy. J. Mater. Chem. C 2025 , 7 , 3414−3423..
Hou, H. H.; He, X.; Ma, H.; Zhou, H. F.; Wen, B. Y.; Wang, X. D.; Deng, Y. F. Lightweight ethylene-vinyl acetate copolymer/low-density polyethylene/carbon nanotube foams via supercritical carbon dioxide foaming for piezoresistive sensors. Chinese J. Polym. Sci. 2025 , 7 , 1208−1221..
Zhu, M.; Zhang, J.; Xu, W.; Xiong, R.; Huang, C. Cellulose-based fibrous materials for self-powered wearable pressure sensor: a mini review. Cellulose 2023 , 4 , 1981−1998..
Gui, S. S.; Da, B. X.; Peng, F.; Zheng, G. Q.; Dai, K.; Liu, C. T.; Shen, C. Y. One-step and continuous fabrication of coaxial piezoelectric fiber for sensing application. Chinese J. Polym. Sci. 2023 , 11 , 1778−1785..
[Yoneyama, T. Development of a friction sensor for hot forging. Int. J. Adv. Manuf. Tech . 2017 , 5−8 , 2251−2261..
Nie, B.; Huang, R.; Yao, T.; Zhang, Y.; Miao, Y.; Liu, C.; Liu, J.; Chen, X. Textile-based wireless pressure sensor array for human-interactive sensing. Adv. Funct. Mater. 2019 , 22 , 1808786.1−1808786.10..
Ha, K. H.; Huh, H.; Li, Z.; Lu, N. Soft capacitive pressure sensors: trends, challenges, and perspectives. ACS Nano 2022 , 3 , 3442−3448..
Wang, Y.; Yue, Y.; Cheng, F.; Cheng, Y.; Ge, B.; Liu, N.; Gao, Y. Ti3C2Tx Mxene-based flexible piezoresistive physical sensors. ACS Nano 2022 , 2 , 1734−1758..
[Fiorillo, A. S.; Critello, C. D.; Pullano, S. A. Theory, technology and applications of piezoresistive sensors: a review. Sens. Actuators A: Phys . 2018 , 156−175..
[Maryamova, I.; Druzhinin, A.; Lavitska, E.; Gortynska, I.; Yatzuk, Y. Low-temperature semiconductor mechanical sensors. Sens. Actuators A: Phys . 2000 , 1−3 , 153−157..
Javed, Y.; Mansoor, M.; Shah, I. A. A review of principles of MEMS pressure sensing with its aerospace applications. Sensor Rev. 2019 , 5 , 652−664..
Ji, F.; Sun, Z.; Hang, T.; Zheng, J.; Li, X.; Duan, G.; Zhang, C.; Chen, Y. Flexible piezoresistive pressure sensors based on nanocellulose aerogels for human motion monitoring: a review. Compos. Commun . 2022 , 35 , 101351..
[Mi, H. Y.; Jing, X.; Politowicz, A. L.; Chen, E.; Huang, H. X.; Turng, L. S. Highly compressible ultra-light anisotropic cellulose/graphene aerogel fabricated by bidirectional freeze drying for selective oil absorption. Carbon 2018 , 199−209..
Wang, C.; Chen, X.; Wang, B.; Huang, M.; Wang, B.; Jiang, Y.; Ruoff, R. S. Freeze-casting produces a graphene oxide aerogel with a radial and centrosymmetric structure. ACS Nano 2018 , 6 , 5816−5825..
Zhou, S.; Apostolopoulou-Kalkavoura, V.; da Costa, M. V. T.; Bergstrom, L.; Stromme, M.; Xu, C. Elastic aerogels of cellulose nanofibers@metal-organic frameworks for thermal insulation and fire retardancy. Nano-Micro Lett . 2020 , 12 , 9..
Jiang, S.; Zhang, M.; Jiang, W.; Xu, Q.; Yu, J.; Liu, L.; Liu, L. Multiscale nanocelluloses hybrid aerogels for thermal insulation: the study on mechanical and thermal properties. Carbohydr. Polym . 2020 , 247 , 116701..
Kang, Y. F.; Tang, J. L.; Song, M.; Wang, W.; Ma, J. C.; Ji, Z. Y.; Liu, T.; Huang, W. H. Electrostatic encapsulation of cobalt ions into crystalline framework derived polymer aerogel: ultra-light, pressure resistant, hydrophobic, photothermal conversion, heat insulation and infrared stealth. Chinese J. Polym. Sci. 2024 , 7 , 946−957..
Wu, W. W.; Shang,J. X.; Li, N.; Wang, Y.; Yu, J. R.; Hu, Z. M. Ultralight and anisotropic heterocyclic para-aramid nanofiber/reduced graphene oxide composite aerogel for efficient thermal insulation and flame retardancy. Chinese J. Polym. Sci. 2025 , 1 , 141−152..
Wang, M.; Chen, Y.; Qin, Y.; Wang, T.; Yang, J.; Xu, F. Compressible, fatigue resistant, and pressure-sensitive carbon aerogels developed with a facile method for sensors and electrodes. ACS Sustain. Chem. Eng. 2019 , 15 , 12726−12733..
Ding, Y.; Xu, T.; Onyilagha, O.; Fong, H.; Zhu, Z. Recent advances in flexible and wearable pressure sensors based on piezoresistive 3d monolithic conductive sponges. ACS Appl. Mater. Interfaces 2019 , 7 , 6685−6704..
Wang, C.; Pan, Z.-Z.; Lv, W.; Liu, B.; Wei, J.; Lv, X.; Luo, Y.; Nishihara, H.; Yang, Q.-H. A directional strain sensor based on anisotropic microhoneycomb cellulose nanofiber-carbon nanotube hybrid aerogels prepared by unidirectional freeze drying. Small 2019 , 15 , 1805363..
[Huang, J.; Wang, H.; Liang, B.; Etim, U. J.; Liu, Y.; Li, Y.; Yan, Z. Oriented freeze-casting fabrication of resilient copper nanowire-based aerogel as robust piezoresistive sensor. Chem. Eng. J . 2019 , 28−36..
Wang, L.; Zhang, M.; Yang, B.; Tan, J.; Ding, X. Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/Ti3AlC2 mxene composite aerogel for sensitive pressure sensor. ACS Nano 2020 , 8 , 10633−10647..
Chen, Z.; Zhuo, H.; Hu, Y.; Lai, H.; Liu, L.; Zhong, L.; Peng, X. Wood-derived lightweight and elastic carbon aerogel for pressure sensing and energy storage. Adv. Funct. Mater . 2020 , 30 , 1910292..
Ping, X. F.; Wang, Y.; Liu, L.; Liu, F. Y.; He, H. W.; Wang, P.; Yu, W. W.; Zheng, Q. Improving thermal-oxidative aging resistance of styrene-butadiene rubber by antioxidant loaded silica aerogel. Chinese J. Polym. Sci. 2024 , 8 , 1198−1209..
Yang, Z. Y.; Huang, L. J.; Shao, Z. Q.; Yang, Y.; Cao, X. Y.; Wang, Z. H.; Cui, S.; Zhu, C. H.; Liu, Y. High-performance polydimethylsiloxane composites based on ordered three-dimensional PVA-MMT aerogel network: network structure regulation and mechanical enhancement mechanism. Chinese J. Polym. Sci. 2025 , 11 , 2171−2184..
Li, C.; Ding, Y.-W.; Hu, B.-C.; Wu, Z.-Y.; Gao, H.-L.; Liang, H.-W.; Chen, J.-F.; Yu, S.-H. Temperature-invariant superelastic and fatigue resistant carbon nanofiber aerogels. Adv. Mater . 2020 , 32 , 1904331..
Wang, T.; Long, M. C.; Zhao, H.-B.; Liu, B.-W.; Shi, H. G.; An, W. L.; Li, S. L.; Xu, S. M.; Wang, Y. Z. An ultralow-temperature superelastic polymer aerogel with high strength as a great thermal insulator under extreme conditions. J. Mater. Chem. A 2020 , 36 , 18698−18706..
Huang, J.; Zeng, J.; Liang, B.; Wu, J.; Li, T.; Li, Q.; Feng, F.; Feng, Q.; Rood, M. J.; Yan, Z. Multi-arch-structured all-carbon aerogels with superelasticity and high fatigue resistance as wearable sensors. Acs Appl. Mater. Interfaces 2020 , 14 , 16822−16830..
Shiratsuchi, T.; Imai, T. Development of fiber Bragg grating strain sensor with temperature compensation for measurement of cryogenic structures. Cryogenics 2021 , 113 , 103233..
[Gao, H. C.; Wang, X. F.; Tang, C. J.; Li, B. Y.; Yi, X. L.; Lan, T.; Yang, Y.; Wang, M.; Yang, S., Research on fiber Bragg grating sensors for strain monitoring at cryogenic temperatures. Global Intelligent Industry Conference, Guangzhou, PEOPLES R CHINA, 2020 .
Li, M.; Huang, G. W.; Li, N.; Liu, Y.; Qu, C. B.; Huang, Y. Flexible cotton fiber-based composite films with excellent bending stability and conductivity at cryogenic temperature. ACS Appl. Mater. interfaces 2022 , 18 , 21486−21496..
Chen, Y.; Zhou, L.; Chen, L.; Duan, G.; Mei, C.; Huang, C.; Han, J.; Jiang, S. Anisotropic nanocellulose aerogels with ordered structures fabrica ted by directional freeze-drying for fast liquid transport. Cellulose 2019 , 11 , 6653−6667..
[Zhang, X.; Liu, M.; Wang, H.; Yan, N.; Cai, Z.; Yu, Y. Ultralight, hydrophobic, anisotropic bamboo-derived cellulose nanofibrils aerogels with excellent shape recovery via freeze-casting. Carbohydr. Polym . 2019 , 232-240..
Tang, C.; Brodie, P.; Li, Y.; Grishkewich, N. J.; Brunsting, M.; Tam, K. C. Shape recoverable and mechanically robust cellulose aerogel beads for efficient removal of copper ions. Chem. Eng. J . 2020 , 392 , 124821..
Kim, C. H.; Youn, H. J.; Lee, H. L. Preparation of cross-linked cellulose nanofibril aerogel with water absorbency and shape recovery. Cellulose 2015 , 6 , 3715−3724..
Zhuo, H.; Hu, Y.; Chen, Z.; Peng, X.; Lai, H.; Liu, L.; Liu, Q.; Liu, C.; Zhong, L. Linking renewable cellulose nanocrystal into lightweight and highly elastic carbon aerogel. ACS Sustain. Chem. Eng. 2020 , 32 , 11921−11929..
[Long, S.; Feng, Y.; He, F.; He, S.; Hong, H.; Yang, X.; Zheng, L.; Liu, J.; Gan, L.; Long, M. An ultralight, supercompressible, superhydrophobic and multifunctional carbon aerogel with a specially designed structure. Carbon 2020 , 137-145..
Haider, I.; Khan, M. A.; Aziz, S.; Jaffery, S. H. I.; Faraz, M. I.; Gul, I. H.; Jung, D.-W.; Saidani, T.; Shewakh, W. M. Exploring the weathering and accelerated environmental aging of wave-transparent reinforced composites. Polymers 2025 , 17 , 357..
Fadil, Y.; Dinh, L. N. M.; Yap, M. O. Y.; Kuchel, R. P.; Yao, Y.; Omura, T.; Aregueta-Robles, U. A.; Song, N.; Huang, S.; Jasinski, F.; Thickett, S. C.; Minami, H.; Agarwal, V.; Zetterlund, P. B. Ambient-temperature waterborne polymer/rgo nanocomposite films: effect of rgo distribution on electrical conductivity. Acs Appl. Mater. Interfaces 2019 , 51 , 48450−48458..
de Oliveira, C. C. S.; Ando, R. A.; Camargo, P. H. C. Size-controlled synthesis of silver micro/nanowires as enabled by HCL oxidative etching. Phys.Chem.Chem.Phys. 2013 , 6 , 1887−1893..
Zhuo, H.; Hu, Y.; Tong, X.; Chen, Z.; Zhong, L.; Lai, H.; Liu, L.; Jing, S.; Liu, Q.; Liu, C.; Peng, X.; Sun, R. A supercompressible, elastic, and bendable carbon aerogel with ultrasensitive detection limits for compression strain, pressure, and bending angle. Adv Mater. 2018 , 18 , 1706705..
Chen, X.; Liu, H.; Zheng, Y.; Zhai, Y.; Liu, X.; Liu, C.; Mi, L.; Guo, Z.; Shen, C. Highly compressible and robust polyimide/carbon nanotube composite aerogel for high-performance wearable pressure sensor. Acs Appl. Mater. Interfaces 2019 , 45 , 42594−42606..
Rege, A.; Schestakow, M.; Karadagli, I.; Ratke, L.; Itskov, M. Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. Soft Matter 2016 , 34 , 7079−7088..
0
Views
2
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802046900号