

FOLLOWUS
a.National Engineering Lab of Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
b.Tongxiang Research Institute, Zhejiang Sci-Tech University, Jiaxing 314599, China
wwjm2001@126.com or wanjunmin@zstu.edu.cn
Received:11 October 2025,
Accepted:18 November 2025,
Published Online:19 January 2026,
Published:05 February 2026
Scan QR Code
Wu, C. Q.; Wang, Z.; Xiu, T. Y.; Zhu, X.; Wan, J. M. A self-healing and flame-retardant poly(urethane-urea) elastomer driven by hydrogen bonds and phosphorus-nitrogen synergy. Chinese J. Polym. Sci. 2026, 44, 499–512
Chen-Qing Wu, Zeng Wang, Tian-Yu Xiu, et al. A Self-healing and Flame-retardant Poly(urethane-urea) Elastomer Driven by Hydrogen Bonds and Phosphorus-Nitrogen Synergy[J]. Chinese Journal of Polymer Science, 2026, 44(2): 499-512.
Wu, C. Q.; Wang, Z.; Xiu, T. Y.; Zhu, X.; Wan, J. M. A self-healing and flame-retardant poly(urethane-urea) elastomer driven by hydrogen bonds and phosphorus-nitrogen synergy. Chinese J. Polym. Sci. 2026, 44, 499–512 DOI: 10.1007/s10118-025-3510-8.
Chen-Qing Wu, Zeng Wang, Tian-Yu Xiu, et al. A Self-healing and Flame-retardant Poly(urethane-urea) Elastomer Driven by Hydrogen Bonds and Phosphorus-Nitrogen Synergy[J]. Chinese Journal of Polymer Science, 2026, 44(2): 499-512. DOI: 10.1007/s10118-025-3510-8.
A multifunctional poly(urethane-urea) elastomer
engineered with dynamic hydrogen bonds and a phosphorus-nitrogen flame retardant
achieves over 94.46% self-healing efficiency and a V-0 flame-retardant rating while maintaining high mechanical strength.
Although poly(urethane-urea) elastomers (PUEs) possess excellent mechanical properties and durability
their inherent flammability and inability to self-repair after damage significantly limits their applications in high-end fields. To address this challenge
this study employs a supramolecular chemistry approach by simultaneously incorporating multiple hydrogen bonds as dynamic cross-linking points and a phosphorus-nitrogen synergistic flame-retardant structure into the poly(urethane-urea) network. The multiple hydrogen bonds endow the material with efficient intrinsic self-healing capability
while the phosphorus-nitrogen flame retardant ensures outstanding thermal stability and flame resistance
leading to the successful synthesis of a high-performance multifunctional poly(urethane-urea) elastomer. Experimental results demonstrated that when the content of the flame retardant diethyl (2-((2-aminoethyl)amino)ethyl)phosphoramidate (DEPTA) was 10 wt%
the resulting PUE/10%DEPTA achieved a V-0 rating in the vertical burning test
with a limiting oxygen index (LOI) of 30%. Concurrently
the elastomer maintained good toughness
exhibiting a tensile strength of 27.3 MPa
an elongation at break of 601%
and a self-healing efficiency of up to 94.46%. This breakthrough shows significant promise for advanced engineering applications that demand fire safety
structural durability
and extended service life through self-repair.
Ding, F.; Liu, L. Y.; Liu, T. L.; Li, Y. Q.; Li, J. P.; Sun, Z. Y. Predicting the mechanical properties of polyurethane elastomers using machine learning. Chinese J. Polym. Sci. 2023 , 41 , 422−431..
Zhang, H. M.; Han, G. P.; Cheng, W. L.; Liu, S. J.; Wang, X. H. Cationic CO 2 -based waterborne polyurethane with high solid content and excellent ageing resistance. Chinese J. Polym. Sci. 2022 , 40 , 1183−1192..
Wang, L.; Zhang, K. Q.; Zhang, X. X.; Tan, Y.; Guo, L. F.; Xia, Y. G.; Wang, X. Mismatched supramolecular interactions facilitate the reprocessing of super-strong and ultratough thermoset elastomers. Adv. Mater. 2024 , 36 , 2311758..
Tian, X. Z.; Yang, R.; Ma, J. J.; Ni, Y. H.; Deng,H. B.; Dai, L.; Tan, J. J.; Zhang, M. Y.; Jiang, X. A novel ternary composite of polyurethane/polyaniline/nanosilica with antistatic property and excellent mechanical strength: preparation and mechanism. Chinese J. Polym. Sci. 2022 , 40 , 789−798..
Xiang, X.; Zhang, L.; Sheng, D.; Yang, X.; Qi, X.; Wei, S.; Dai, H. Healable and recyclable polyurea-urethane elastomer with high mechanical robustness, superhigh elastic restorability, and exceptional crack tolerance. Adv. Funct. Mater. 2024 , 34 , 2312571..
Wang, X. Y.; Yang, Z. H.; Zhang, Y. M.; Wang, T. M.; Li, S.; Wang, Q. H.; Zhang, X. R. Syncretic of soft, hard, and rigid segments cultivate high-performance elastomer. Chem. Eng. J. 2024 , 495 , 153466..
Jing, Z. X.; Pan, Z. R.; Liang, J. L.; Li, Y.; Mohd Said, F. Biocompatible polyurethanes with thermally-induced shape memory properties derived from three-arm branched poly(ε-caprolactone-co-γ-butyrolactone)-b-poly(lactide) block copolymers. Eur. Polym. J. 2024 , 206 , 112753..
Chen, H. Y.; Jin, S. C.; Sun, R.; Li, K.; Li, L. C.; Yu, Z. C.; Yu, Z. X.; Xiao, H. N. Nature-mimetic engineering of sustainable polyurethane adhesives with high bonding strength and flame retardancy. Eur. Polym. J. 2025 , 236 , 114145..
Xu, Y. J.; Zhang, K. T.; Wang, J. R.; Wang, Y. Z. Biopolymer-based flame retardants and flame-retardant m aterials. Adv. Mater. 2025 , 37 , 2414880..
Ding, H. L.; Liu, L.; Wang, C. S.; Sun, N.; Wu, L. N.; Lin, B. C.; Zhou, K. Q.; Zhang, W.; Qian, X. D.; Shi, C. L.; Yu, B. Highly transparent, mechanically strong, recyclable, and flame-retardant vanillin-modified poly(urethane-urea) elastomers via dynamic oxime-urethane bonds and hydrogen bonds. Chem. Eng. J. 2025 , 514 , 163416..
Li, Y.; Zhou, M.; Wang, R. F.; Han, H. C.; Huang, Z.; Wang, J. Self-healing polyurethane elastomers, An essential review and prospects for future research. Eur. Polym. J. 2024 , 214 , 113159..
Lu, P.; Zhao, Z. Y.; Xu, B. R.; Li, Y. M.; Deng, C.; Wang, Y. Z. A novel inherently flame-retardant thermoplastic polyamide elastomer. Chem. Eng. J. 2020 , 379 , 122278..
Rao, W. H.; Xu, H. X.; Xu, Y. J.; Qi, M.; Liao, W.; Xu, S.; Wang, Y. Z. Persistently flame-retardant flexible polyurethane foams by a novel phosphorus-containing polyol. Chem. Eng. J. 2018 , 343 , 198−206..
[Singh, I.; Sivaramakrishna, A. Phosphorus-based polymeric flame retardants – recent advances and perspectives. Chem. Select 2024 , 9 , e202401485..
Ding, N.; Yang, Y.; Lu, B. B.; Zhang, R.; Xu, P. W.; Niu, D. Y.; Yang, W. J.; Ma, P. M. From a bio-based polyphenol diol intermedia to high-performance polyurethane elastomer, Thermal stability, reprocessability and flame retardancy. J. Colloid Interface Sci. 2025 , 680 , 608−617..
Yang, S. W.; Wang, S.; Du, X. S.; Du, Z. L.; Cheng, X.; Wang, H. B. Mechanically robust self-healing and recyclable flame-retarded polyurethane elastomer based on thermoreversible crosslinking network and multiple hydrogen bonds. Chem. Eng. J. 2020 , 391 , 123544..
Zhang, T. T.; Huo, S. Q.; Ye, G. F.; Wang, C.; Zhang, Q.; Liu, Z. T. Tough, high-strength, flame-retardant and recyclable polyurethane elastomers based on dynamic borate acid esters. React. Funct. Polym. 2024 , 205 , 106056..
Kowalczyk, S.; Grochowska, N.; Dębowski, M.; Jurczyk-Kowalska, M.; Szewczyk-Łagodzińska, M.; Florjańczyk, Z.; Plichta, A. Poly(urea-urethane) elastomers with fire-retardant and tensile properties enhanced by a built-in phosphorus derivative. ACS Appl. Polym. Mater. 2023 , 5 , 7155−7166..
[Rong, F.; Song, N.; Xiang, L.; Chen, Z.; Wang, K.; Chen, T.; Yu, Y.; Jiang, J. Engineering self-healing and flame-retardant polyurethane elastomers via phosphaphenanthrene functionalization and hydrogen bond network design. Polym. Degrad. Stabil . 2025 , 242 , 111636..
Zhou, Y.; Zhu, L. Y.; Zhai, J. X.; Yang, R. J.; Guo, X. Y. Analysis of the mechanical behavior of polyurethane thermoset elastomers based on hydrogen bonding between different crosslinking point structures. Polymer 2023 , 285 , 126356..
Stubbs, E.; Brown, M.; Steele, A.; Song, C.; Emrick, T. Designing branched deoxybenzoin polyesters as polymeric flame retardants. J. Polym. Sci. Pol. Chem. 2019 , 57 , 1765−1770..
Amjed, N.; Bhatti, I. A.; Akram, N.; Zia, K. M.; Farooq, A.; Mehr-un, N. Synthesis, characterization and molecular docking of chitin-curcumin based thermoset polyurethane elastomers for angiogenic potential. Int. J. Biol. Macromol. 2025 , 296 , 140341..
Hao, X. Y.; Yu, B.; Li, L.; Ju, H.; Tian, M.; Cao, P. F. Semi-interpenetrating polyurethane network with fatigue elimination and upcycled mechanical performance. Macromolecules 2024 , 57 , 5063−5072..
Gu, L.; Luo, Y. Flame retardancy and thermal decomposition of phosphorus-containing waterborne polyurethanes modified by halogen-free flame retardants. Ind. Eng. Chem. Res. 2015 , 54 , 2431−2438..
Wang, H.; Liu, Q.; Zhao, X.; Jin, Z. Synthesis of reactive DOPO-based flame retardant and its application in polyurethane elastomers. Polym. Degrad. Stabil. 2021 , 183 , 109440..
Zheng, Q. Y.; Jiang, X. L.; Lu, X. A multi-functional polyurethane elastomer with high damping, water resistance and flame retardancy. React. Funct. Polym. 2024 , 196 , 105838..
Chattopadhyay, D. K.; Webster, D. C. Thermal stability and flame retardancy of polyurethanes. Prog. Polym. Sci. 2009 , 34 , 1068−1133..
Wan, L.; Deng, C.; Chen, H.; Zhao, Z. Y.; Huang, S. C.; Wei, W. C.; Yang, A. H.; Zhao, H. B.; Wang, Y. Z. Flame-retarded thermoplastic polyurethane elastomer, From organic materials to nanocomposites and new prospects. Chem. Eng. J. 2021 , 417 , 129314..
Zhan, S. Q.; Liu, H. Y.; Bo, Y. Y.; Yuan, R. Z.; Zhang, Y. T.; Zhang, D. X.; Yang, H. M.; Tian, X.; Wang, S. W.; Zhang, M. Y. Preparation and application of high strength, high transparency, and high impact resistance polyurethane elastomers by controlled cross-linking. Polymer 2025 , 318 , 128002..
Li, S. N.; Liu, M. Y.; Zhou, X.; Dong, Y. M.; Li, J. H. Self-healing polyurethane elastomer based on crosslinked-linear interpenetrating structure, preparation, properties, and applications. Macromol. Mater. Eng. 2021 , 306 , 2000684..
Du, X. Y.; Tong, Y. F.; Wang, T.; Zhang, A. Q.; Xu, Q. H. Self-healing and recyclable polyurethane-based solid-state polymer electrolyte via Diels-Alder dynamic network. J. Mol. Struct. 2025 , 1321 , 139793..
Chen, C. X.; Chen, S. W.; Hou, Z. Q.; Zhang, K.; Lv, Y. Y.; Hu, J. S.; Sun, S. Y.; Yang, L. Q.; Chen, J. Thermosensitive, tough and size-adjustable elastomer with multi-hydrogen bond based on supramolecular interactions. J. Mater. Sci. Technol. 2025 , 229 , 36−47..
Tu J.; Xu H.; Xiang G. F.; Chen L.; Li P. Y.; Guo X. D. Highly stretchable, high efficiency room temperature self-healing polyurethane adhesive based on hydrogen bonds – applicable to solid rocket propellants. Polym. Chem. 2021 , 12 , 4532−4545..
Fu, D. H.; Pu, W. L.; Wang, Z. H.; Lu, X. L.; Sun, S. J.; Yu, C. J.; Xia, H. S. A facile dynamic crosslinked healable poly(oxime-urethane) elastomer with high elastic recovery and recyclability. J. Mater. Chem. A 2018 , 6 , 18154−18164..
Wu, H. C.; Shao, S. R.; Dong, S. H.; Wang, A.; Li, Z.; Han, X. L.; Luo, F.; Li, J. H.; Zhao, D. G.; Lan, W. L.; Tan, H. Influence of hydrogen bonding on the temperature-accelerated hydrolysis of silicone based polyetherurethane. Chinese J. Polym. Sci. 2023 , 41 , 1230−1237..
Chen, S. L.; Li, S. Y.; Ye, Z. P.; Zhang, Y. F.; Gao, S. D.; Rong, H.; Zhang, J. H.; Deng, L. D.; Dong, A. J. Superhydrophobic and superhydrophilic polyurethane sponge for wound healing. Chem. Eng. J. 2022 , 446 , 136985..
Yao, Y.; Liu, B.; Xu, Z. Y.; Yang, J. H.; Liu, W. G. An unparalleled H-bonding and ion-bonding crosslinked waterborne polyurethane with super toughness and unprecedented fracture energy. Mater. Horiz. 2021 , 8 , 2742−2749..
0
Views
3
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802046900号