

FOLLOWUS
a.Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
b.University of Chinese Academy of Sciences, Beijing 100049, China
c.Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino-Alessandria Campus, Alessandria 15121, Italy
ylsu@iccas.ac.cn (Y.L.S.)
gmliu@iccas.ac.cn (G.M.L.)
Received:16 October 2025,
Accepted:19 November 2025,
Published Online:25 December 2025,
Published:15 January 2026
Scan QR Code
Wang, M.; Yao, Y.; Zhao, H.; Ju, W. L.; Su, Y. L.; Wang, D. J.; Liu, G. M. Nucleation of polymers in nanopores and nanocomposites with nanoparticles/nanosheets. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3508-2
Ming Wang, Ye Yao, Hui Zhao, et al. Nucleation of Polymers in Nanopores and Nanocomposites with Nanoparticles/Nanosheets[J/OL]. Chinese Journal of Polymer Science, 2026, 441-12.
Wang, M.; Yao, Y.; Zhao, H.; Ju, W. L.; Su, Y. L.; Wang, D. J.; Liu, G. M. Nucleation of polymers in nanopores and nanocomposites with nanoparticles/nanosheets. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3508-2 DOI:
Ming Wang, Ye Yao, Hui Zhao, et al. Nucleation of Polymers in Nanopores and Nanocomposites with Nanoparticles/Nanosheets[J/OL]. Chinese Journal of Polymer Science, 2026, 441-12. DOI: 10.1007/s10118-025-3508-2.
This feature article reviews recent advances in polymer nucleation under confined and interface-dominated conditions
focusing on AAO templates and nanocomposites containing nanoparticles or nanosheets. The interplay of finite-size and interfacial effects gives rise to distinctive phenomena
including homogeneous nucleation
surface nucleation
prefreezing
and supernucleation.
Nucleation
which is the initial step of crystallization
critically governs the polymer crystallization behavior
influencing the crystallization temperature
kinetics
and morphology. However
the direct observation of the nucleation process in polymers remains elusive owing to spatial and temporal resolution limitations. This feature article summarizes the recent progress in understanding polymer nucleation within confined and interface-dominated environments
focusing on three representative systems: anodic aluminum oxide templates and nanocomposites containing nanoparticles or nanosheets. The interplay between finite size and interfacial effects has revealed some novel phenomena
such as homogeneous nucleation
surface nucleation
prefreezing
and supernucleation.
[Wunderlich, B. In Macromolecular Physics , Academic Press, New York, 1976 , p. 1−114..
Schick, C.; Androsch, R.; Schmelzer, J. W. P. Homogeneous crystal nucleation in polymers. J. Phys.-Condens. Matter 2017 , 29 , 453002..
Blundell, D. J.; Keller, A.; Kovacs, A. J. A new self-nucleation phenomenon and its application to the growing of polymer crystals from solution. J. Polym. Sci. B Polym. Lett. 1966 , 4 , 481−486..
Fillon, B.; Wittmann, J. C.; Lotz, B.; Thierry, A. Self-nucleation and recrystallization of isotactic polypropylene (α phase) investigated by differential scanning calorimetry. J. Polym. Sci. B: Polym. Phys. 1993 , 31 , 1383−1393..
Sangroniz, L.; Cavallo, D.; Müller, A. J. Self-nucleation effects on polymer crystallization. Macromolecules 2020 , 53 , 4581−4604..
[Michell, R. M.; Mugica, A.; Zubitur, M.; Müller, A. J., In Polymer Crystallization I: From Chain Microstructure to Processing , Auriemma, F.; Alfonso, G. C.; de Rosa, C., Eds. Springer International Publishing, Cham, 2017 , pp. 215-256..
Sangroniz, L.; Wang, B.; Su, Y.; Liu, G.; Cavallo, D.; Wang, D.; Müller, A. J. Fractionated crystallization in semicrystalline polymers. Prog. Polym. Sci. 2021 , 115 , 101376..
Fillon, B.; Lotz, B.; Thierry, A.; Wittmann, J. C. Self-nucleation and enhanced nucleation of polymers. Definition of a convenient calorimetric “eff iciency scale” and evaluation of nucleating additives in isotactic polypropylene (α phase). J. Polym. Sci. B: Polym. Phys. 1993 , 31 , 1395−1405..
Wang, B.; Utzeri, R.; Castellano, M.; Stagnaro, P.; Müller, A. J.; Cavallo, D. Heterogeneous nucleation and self-nucleation of isotactic polypropylene microdroplets in immiscible blends: from nucleation to growth-dominated crystallization. Macromolecules 2020 , 53 , 5980−5991..
Priftis, D.; Sakellariou, G.; Hadjichristidis, N.; Penott, E. K.; Lorenzo, A. T.; Müller, A. J. Surface modification of multiwalled carbon nanotubes with biocompatible polymers via ring opening and living anionic surface initiated polymerization. Kinetics and crystallization behavior. J. Polym. Sci. Part A: Polym. Chem. 2009 , 47 , 4379−4390..
Müller, A. J.; Arnal, M. L.; Trujillo, M.; Lorenzo, A. T. Super-nucleation in nanocomposites and confinement effects on the crystallizable components within block copolymers, miktoarm star copolymers and nanocomposites. Eur. Polym. J. 2011 , 47 , 614−629..
Trujillo, M.; Arnal, M. L.; Müller, A. J.; Laredo, E.; Bredeau, S.; Bonduel, D.; Dubois, P. Thermal and morphological characterization of nanocomposites prepared by in-situ poly merization of high-density polyethylene on carbon nanotubes. Macromolecules 2007 , 40 , 6268−6276..
Trujillo, M.; Arnal, M. L.; Müller, A. J.; Bredeau, S.; Bonduel, D.; Dubois, P.; Hamley, I. W.; Castelletto, V. Thermal fractionation and isothermal crystallization of polyethylene nanocomposites prepared by in situ polymerization. Macromolecules 2008 , 41 , 2087−2095..
Vega, J. F.; Fernández-Alcázar, J.; López, J. V.; Michell, R. M.; Pérez-Camargo, R. A.; Ruelle, B.; Martínez-Salazar, J.; Arnal, M. L.; Dubois, P.; Müller, A. J. Competition between supernucleation and plasticization in the crystallization and rheological behavior of PCL/CNT-based nanocomposites and nanohybrids. J. Polym. Sci. B: Polym. Phys. 2017 , 55 , 1310−1325..
Thompson, G. E.; Furneaux, R. C.; Wood, G. C.; Richardson, J. A.; Goode, J. S. Nucleation and growth of porous anodic films on aluminum. Nature 1978 , 272 , 433−435..
Masuda, H.; Fukuda, K. Ordered metal nanohole arrays made by a 2-step replication of honeycomb structures of anodic alumina. Science 1995 , 268 , 1466−1468..
Shi, G.; Liu, G.; Su, C.; Chen, H.; Chen, Y.; Su, Y.; Muller, A. J.; Wang, D. Reexamining the crystallization of poly(epsilon-caprolactone) and isotactic polypropylene under hard confinement: nucleation and orientation. Macromolecules 2017 , 50 , 9015−9023..
Steinhart, M.; Goring, P.; Dernaika, H.; Prabhukaran, M.; Gosele, U.; Hempel, E.; Thurn-Albrecht, T. Coherent kinetic control over crystal orientation in macroscopic ensembles of polymer nanorods and nanotubes. Phys. Rev. Lett. 2006 , 97 , 027801..
Guan, Y.; Liu, G. M.; Gao, P. Y.; Li, L.; Ding, G. Q.; Wang, D. J. Manipulating crystal orientation of poly(ethylene oxide) by nanopores. ACS Macro Lett. 2013 , 2 , 181−184..
Suzuki, Y.; Duran, H.; Steinhart, M.; Butt, H. J.; Floudas, G. Homogeneous crystallization and local dynamics of poly(ethylene oxide) (PEO) confined to nanoporous alumina. Soft Matter 2013 , 9 , 2621−2628..
Woo, E.; Huh, J.; Jeong, Y. G.; Shin, K. From homogeneous to heterogeneous nucleation of chain molecules under nanoscopic cylindrical confinement. Phys. Rev. Lett. 2007 , 98 , 136103..
Wu, H.; Wang, W.; Huang, Y.; Wang, C.; Su, Z. Polymorphic behavior of syndiotactic polystyrene crystallized in cylindrical nanopores. Macromolecules 2008 , 41 , 7755−7758..
Duran, H.; Steinhart, M.; Butt, H. J.; Floudas, G. From heterogeneous to homogeneous nucleation of isotactic poly(propylene) confined to nanoporous alumina. Nano Lett. 2011 , 11 , 1671−1675..
Reid, D. K.; Ehlinger, B. A.; Shao, L.; Lutkenhaus, J. L. Crystallization and orientation of isotactic poly(propylene) in cylindrical nanopores. J. Polym. Sci. B: Polym. Phys. 2014 , 52 , 1412−1419..
Suzuki, Y.; Duran, H.; Akram, W.; Steinhart, M.; Floudas, G.; Butt, H. J. Multiple nucleation events and local dynamics of poly(epsilon-caprolactone) (PCL) confined to nanoporous alumina. Soft Matter 2013 , 9 , 9189−9198..
Sanz, B.; Blaszczyk-Lezak, I.; Mijangos, C.; Palacios, J. K.; Müller, A. J. New double-infiltration methodology to prepare PCL–PS core–shell nanocylinders inside anodic aluminum oxide templates. Langmuir 2016 , 32 , 7860 −7865..
Liu, G.; Müller, A. J.; Wang, D. Confined crystallization of polymers within nanopores. Acc. Chem. Res. 2021 , 54 , 3028−3038..
Michell, R. M.; Lorenzo, A. T.; Muller, A. J.; Lin, M. C.; Chen, H. L.; Blaszczyk-Lezak, I.; Martin, J.; Mijangos, C. The crystallization of confined polymers and block copolymers infiltrated within alumina nanotube templates. Macromolecules 2012 , 45 , 1517−1528..
Wang, M.; Li, C.; Napolitano, S.; Wang, D.; Liu, G. Quantifying and modeling the crystallinity of polymers confined in nanopores. ACS Macro Lett. 2024 , 13 , 908−914..
Steinhart, M.; Senz, S.; Wehrspohn, R. B.; Gösele, U.; Wendorff, J. H. Curvature-directed crystallization of poly(vinylidene difluoride) in nanotube walls. Macromolecules 2003 , 36 , 3646−3651..
Su, C.; Shi, G. Y.; Li, X. L.; Zhang, X. Q.; Muller, A. J.; Wang, D. J.; Liu, G. M. Uniaxial and mixed orientations of poly(ethylene oxide) in nanoporous alumina studied by X-ray pole figure analysis. Macromolecules 2018 , 51 , 9484−9493..
Shin, K.; Woo, E.; Jeong, Y. G.; Kim, C.; Huh, J.; Kim, K.-W. Crystalline structures, melting, and crystallization of linear polyethylene in cylindrical nanopores. Macromolecules 2007 , 40 , 6617−6623..
Ma, Y.; Hu, W. B.; Hobbs, J.; Reiter, G. Understanding crystal orientation in quasi-one-dimensional polymer systems. Soft Matter 2008 , 4 , 540−543..
Wu, H.; Wang, W.; Huang, Y.; Su, Z. Orientation of syndiotactic polystyrene crystallized in cylindrical nanopores. Macromol. Rapid Commun. 2009 , 30 , 194−198..
Reynolds, N. M.; Hsu, S. L. A normal vibrational analysis of syndiotactic polystyrene. Macromolecules 1990 , 23 , 3463−3472..
[Koenig, J. L. In Spectroscopy of Polymers, 2nd ed ., Elsevier, New York, 1999 , p. 35−76..
Ma, Y.; Hu, W. B.; Reiter, G. Lamellar crystal ori entations biased by crystallization kinetics in polymer thin films. Macromolecules 2006 , 39 , 5159−5164..
Massa, M. V.; Dalnoki-Veress, K. Homogeneous crystallization of poly(ethylene oxide) confined to droplets: the dependence of the crystal nucleation rate on length scale and temperature. Phys. Rev. Lett. 2004 , 92 , 255509..
[Carvalho, J. L.; Dalnoki-Veress, K. Homogeneous bulk, surface, and edge nucleation in crystalline nanodroplets. Phys. Rev. Lett . 2010, 105 , 237801..
Brazhnik, P. K.; Freed, K. F.; Tang, H. Polymer melt near a solid wall. J. Chem. Phys. 1994 , 101 , 9143−9154..
Rotella, C.; Wubbenhorst, M.; Napolitano, S. Probing interfacial mobility profiles via the impact of nanoscopic confinement on the strength of the dynamic glass transition. Soft Matter 2011 , 7 , 5260−5266..
Wang, M.; Song, Z.; Liu, G.; Wang, D. Entropic origin of polymer nucleation at amorphous solid interfaces. Phys. Rev. Lett. 2025 , 135 , 018101..
Honma, I.; Nomura, S.; Nakajima, H. Protonic conducting organic/inorganic nanocomposites for polymer electrolyte membrane. J. Membr. Sci. 2001 , 185 , 83−94..
Altorbaq, A. S.; Krauskopf, A. A.; Wen, X.; Pérez-Camargo, R. A.; Su, Y.; Wang, D.; Müller, A. J.; Kumar, S. K. Crystallization kinetics and nanoparticle ordering in semicrystalline polymer nanocomposites. Prog. Polym. Sci. 2022 , 128 , 101527..
Li, S.; Ju, W.; Liu, G.; Su, Y.; Müller, A. J.; Wang, D. Effect of the miscibility between grafted and matrix chains on the dispersion and crystallization of polyethylene-grafted silica nanocomposites. Macromolecules 2023 , 56 , 9636−9649..
Ju, W. L.; Li, S. F.; Su, Y. L.; Wang, D. J. Controllable synthesis of a well-defined polypropylene grafted silica nanoparticles and its effect on crystallization behavior of polypropylene. Chin. J. Polym. Sci. 2022 , 40 , 1411−1421..
Tang, H.; Dong, Q.; Liu, P.; Ding, Y.; Wang, F.; Gao, C.; Zhang, S.; Yang, M. Isothermal crystallization o f polypropylene/surface modified silicananocomposites. Sci. China Chem. 2016 , 59 , 1283−1290..
Pedrazzoli, D.; Pegoretti, A.; Kalaitzidou, K. Understanding the effect of silica nanoparticles and exfoliated graphite nanoplatelets on the crystallization behavior of isotactic polypropylene. Polym. Eng. Sci. 2015 , 55 , 672−680..
Zhao, W.; Su, Y.; Gao, X.; Xu, J.; Wang, D. Interfacial effect on confined crystallization of poly(ethylene oxide)/silica composites. J. Polym. Sci. B: Polym. Phys. 2016 , 54 , 414−423..
Zhao, W. W.; Su, Y. L.; Muller, A. J.; Gao, X.; Wang, D. J. Direct relationship between interfacial microstructure and confined crystallization in poly(ethylene oxide)/silica composites: the study of polymer molecular weight effects. J. Polym. Sci. B: Polym. Phys. 2017 , 55 , 1608−1616..
Habel, C.; Maiz, J.; Olmedo-Martínez, J. L.; López, J. V.; Breu, J.; Müller, A. J. Competition between nucleation and confinement in the crystallization of poly(ethylene glycol)/ large aspect ratio hectorite nanocomposites. Polymer 2020 , 202 , 122734..
Tian, N.; Li, Y. Q.; Gan, H. Y.; Ning, Z. B.; Jiang, N.; Gan, Z. H. Synergistic effect of multi-arm architecture and molecular weight on crystallization and degradation behavior of star-shaped poly(lactic acid). Chinese J. Polym. Sci. 2024 , 42 , 1948−1956..
Gajzlerova, L.; Navratilova, J.; Polaskova, M.; Benicek, L.; Jaska, D.; Zenzingerova, S.; Cermak, R. Tailoring end-use properties of polypropylene through a combination of specific nucleation and long-chain branching. Chinese J. Polym. Sci. 2025 , 43 , 101−109..
Wen, X.; Su, Y.; Liu, G.; Li, S.; Müller, A. J.; Kumar, S. K.; Wang, D. Direct relationship between dispersion and crystallization behavior in poly(ethylene oxide)/poly(ethylene glycol)-g-silica nanocomposites. Macromolecules 2021 , 54 , 1870−1880..
Ming, Y.; Zhou, Z.; Hao, T.; Nie, Y.; Wei, Y.; Zhang, S.; Gao, W. Insights into the crystallization of polymer nanocomposite systems blended with grafted and free chains studied by molecular simulation. Cryst. Growth Des. 2021 , 21 , 2243−2254..
Luo, C.; Kröger, M.; Sommer, J.-U. Molecular dynamics simulations of polymer crystallization under confinement: entangle ment effect. Polymer 2017 , 109 , 71−84..
Nie, Y.; Gu, Z.; Zhou, Q.; Wei, Y.; Hao, T.; Liu, Y.; Liu, R.; Zhou, Z. Controllability of polymer crystal orientation using heterogeneous nucleation of deformed polymer loops grafted on two-dimensional nanofiller. J. Phys. Chem. B 2017 , 121 , 6685−6690..
Liu, F.; Huang, S.-Y.; Tang, J.; Chen, Q. Elongational flow-induced crystallization of poly(l-lactic acid) telechelic ionomers. Chinese. J. Polym. Sci. 2024 , 42 , 1957−1965..
Gros, A.; Huneau, B.; Verron, E.; Tosaka, M. A physically-based model for strain-induced crystallization in natural rubber. Part I: life cycle of a crystallite. J. Mech. Phys. Solids 2019 , 125 , 164−177..
Chandrasekaran, S.; Seidel, C.; Schulte, K. Preparation and characterization of graphite nano-platelet (GNP)/epoxy nano-composite: mechanical, electrical and thermal properties. Eur. Polym. J. 2013 , 49 , 3878−3888..
Jun, Y.-S.; Um, J. G.; Jiang, G.; Lui, G.; Yu, A. Ultra-large sized graphene nano-platelets (Gn Ps) incorporated polypropylene (PP)/GnPs composites engineered by melt compounding and its thermal, mechanical, and electrical properties. Compos. Part B Eng. 2018 , 133 , 218−225..
Bilisik, K.; Akter, M. Polymer nanocomposites based on graphite nanoplatelets (GNPs): a review on thermal-electrical conductivity, mechanical and barrier properties. J. Mater. Sci. 2022 , 57 , 7425−7480..
Colonna, S.; Pérez-Camargo, R. A.; Chen, H.; Liu, G.; Wang, D.; Müller, A. J.; Saracco, G.; Fina, A. Supernucleation and orientation of poly(butylene terephthalate) crystals in nanocomposites containing highly reduced graphene oxide. Macromolecules 2017 , 50 , 9380−9393..
Li, K.; Battegazzore, D.; Pérez-Camargo, R. A.; Liu, G.; Monticelli, O.; Müller, A. J.; Fina, A. Polycaprolactone adsorption and nucleation onto graphite nanoplates for highly flexible, thermally conductive, and thermomechanically stiff nanopapers. ACS Appl. Mater. Interfaces 2021 , 13 , 59206−59220..
Volchko, N. W.; Rutledge, G. C. Heterogeneous nucleation of high-density polyethylene crystals on graphene within microdomains. Macromolecules 2023 , 56 , 4123−4134..
Tariq, M.; Dolynchuk, O.; Thurn-Albrecht, T. Effect of substrate interaction on thermodynamics of prefreezing. Macromolecules 2019 , 52 , 9140−9148..
Iwamatsu, M. Heterogeneous critical nucleation on a completely wettable substrate. J. Chem. Phys. 2011 , 134 , 234709..
Heni, M.; Löwen, H. Surface freezing on patterned substrates. Phys. Rev. Lett. 2000 , 85 , 3668−3671..
Courtemanche, D. J.; Pasmore, T. A.; Van Swol, F. A molecular dynamics study of prefreezing. Mol. Phys. 1993 , 80 , 861−875..
Laird, B. B.; Davidchack, R. L. Wall-induced prefreezing in hard spheres: a thermodynamic perspective. J. Phys. Chem. C 2007 , 111 , 15952−15956..
Löhmann, A.-K.; Henze, T.; Thurn-Albrecht, T. Direct observation of prefreezingat the interface melt–solid in polymer crystallization. Proc. Natl. Acad. Sci. 2014 , 111 , 17368−17372..
Flieger, A.-K.; Schulz, M.; Thurn-Albrecht, T. Interface-induced crystallization of polycaprolactone on graphite via first-order prewetting of the crystalline phase. Macromolecules 2018 , 51 , 189−194..
Tariq, M.; Dolynchuk, O.; Thurn-Albrecht, T. Independent variation of transition temperature and prefrozen layer thickness at the prefreezing transition. J. Phys. Chem. C 2020 , 124 , 26184−26192..
Zhao, H.; Pérez-Camargo, R. A.; Damonte, G.; Armandi, M.; Monticelli, O.; Liu, G.; Müller, A. J.; Fina, A. Crystallization of polycaprolactone within nanopapers based on graphene-related materials. Macromolecules 2025 , 58 , 7343−7357..
Qiu, Y.; Molinero, V. Strength of alkane–fluid attraction determines the interfacial orientation of liquid alkanes and their crystallization through heterogeneous or homogeneous mechanisms. Crystals 2017 , 7 , 86..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802046900号