Fabrication of Superhydrophobic Membrane via One-step Spraying Strategy Utilizing Organosilicon Chemistry and Its Performance in Membrane Distillation
RESEARCH ARTICLE|Updated:2025-12-25
|
Fabrication of Superhydrophobic Membrane via One-step Spraying Strategy Utilizing Organosilicon Chemistry and Its Performance in Membrane Distillation
Chinese Journal of Polymer ScienceVol. 44, Pages: 1-11(2026)
Affiliations:
Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
Li, T. T.; Xu, Z.; Zhang, Y. J.; Su, M. H.; Liu, S. D.; Zhang, S. F. Fabrication of superhydrophobic membrane via one-step spraying strategy utilizing organosilicon chemistry and its performance in membrane distillation. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3488-2
Tian-Tian Li, Zheng Xu, Yu-Jing Zhang, et al. Fabrication of Superhydrophobic Membrane via One-step Spraying Strategy Utilizing Organosilicon Chemistry and Its Performance in Membrane Distillation[J/OL]. Chinese Journal of Polymer Science, 2026, 441-11.
Li, T. T.; Xu, Z.; Zhang, Y. J.; Su, M. H.; Liu, S. D.; Zhang, S. F. Fabrication of superhydrophobic membrane via one-step spraying strategy utilizing organosilicon chemistry and its performance in membrane distillation. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3488-2DOI:
Tian-Tian Li, Zheng Xu, Yu-Jing Zhang, et al. Fabrication of Superhydrophobic Membrane via One-step Spraying Strategy Utilizing Organosilicon Chemistry and Its Performance in Membrane Distillation[J/OL]. Chinese Journal of Polymer Science, 2026, 441-11. DOI: 10.1007/s10118-025-3488-2.
Fabrication of Superhydrophobic Membrane via One-step Spraying Strategy Utilizing Organosilicon Chemistry and Its Performance in Membrane Distillation
Membrane distillation (MD) is an advanced membrane separation process that employs hydrophobic microporous membranes to separate non-volatile solutes from the feed solution
driven by vapor pressure gradients generated through thermal difference. This technology offers strong desalination capabilities and efficiently harnesses low-grade thermal energy sources
including geothermal and waste heat
making it a cost-effective solution for freshwater scarcity. Nevertheless
hydrophobic membranes are prone to contamination by surfactants
inorganic salts
and other substances in feed solutions. To address this
low-sur
face-energy composite nano-inorganic materials composed of carbon nanotubes and silica were modified and synthesized
via
organosilicon chemistry. A superhydrophobic surface exhibiting a water contact angle of 157.96
o
was successfully fabricated using above nano-materials on poly(vinylidene fluoride) (PVDF) membrane surface with micro-nano structures
via
a one-step spray-coating method. Compared to unmodified PVDF membrane
the superhydrophobic membrane demonstrated superior resistance to common scaling agents such as CaCl
2
Mg(OH)
2
CaCO
3
and CaSO
4
while maintaining stable permeate flux (13.4 kg·m
–2
·h
–1
) during MD tests. Additionally
the modified membrane exhibited enhanced wetting resistance when treating feed solutions containing sodium dodecyl sulfate (SDS)
significantly extending the operational lifespan of the membrane. Due to its outstanding performance
this superhydrophobic membrane is expected to promote the practical application of MD technology in the treatment of complex wastewater and efficient seawater desalination.
关键词
Keywords
references
Kalla, S.; Piash, K. S.; Sanyal, O. Anti-fouling and anti-wetting membranes for membrane distillation. J. Water Process Eng. 2022 , 46 , 102634..
Hosseinzadeh, A.; Zhou, J. L.; Altaee, A.; Baziar, M.; Li, D. Effective modelling of hydrogen and energy recovery in microbial electrolysis cell by artificial neural network and adaptive network-based fuzzy inference system. Bioresour. Technol. 2020 , 316 , 123967..
Zhao, S.; Feron, P. H.; Chen, X.; Boztepe, I.; Zhang, J.; Mirza, N. R.; Kong, L. Gas flow enhanced mass transfer in vacuum membrane distillation. Desalination 2023 , 552 , 116434..
Chamani, H.; Woloszyn, J.; Matsuura, T.; Rana, D.; Lan, C. Pore wetting in membrane distillation: A comprehensive review. Prog. Mater. Sci. 2021 , 122 , 100843..
Zhao, S.; Feron, P. H.; Cao, C.; Wardhaugh, L.; Yan, S.; Gray, S. Membrane evaporation of amine solution for energy saving in post-combustion carbon capture: wet ting and condensation. Sep. Purif. Technol. 2015 , 146 , 60−67..
Tijing, L. D.; Woo, Y. C.; Choi, J. S.; Lee, S.; Kim, S. H.; Shon, H. K. Fouling and its control in membrane distillation—a review. J. Membr. Sci. 2015 , 475 , 215−244..
Shaffer, D. L.; Tousley, M. E.; Elimelech, M. Influence of polyamide membrane surface chemistry on gypsum scaling behavior. J. Membr. Sci. 2017 , 525 , 249−256..
Tong,T.; Zhao, S.; Boo, C.; Hashmi, S. M.; Elimelech, M. Relating silica scaling in reverse osmosis to membrane surface properties. Environ. Sci. Technol. 2017 , 51 , 4396−4406..
Liu, K.; Tian, Y.; Jiang, L. Bio-inspired superoleophobic and smart materials: design, fabrication, and application. Prog. Mater. Sci. 2013 , 58 , 503−564..
Li, Q.; Guo, Z. A highly fluorinated SiO 2 particle assembled, durable superhydrophobic and superoleophobic coating for both hard and soft materials. Nanoscale 2019 , 11 , 18338−18346..
Li, X.; Qing, W.; Wu, Y.; Shao, S.; Peng, L. E.; Yang, Y.; Wang, P.; Liu, F.; Tang, C. Y. Omniphobic nanofibrous membrane with pine-needle-like hierarchical nanostructures: toward enhanced performance for membrane distillation. ACS Appl. Mater. Interfaces 2019 , 11 , 47963−47971..
Deka, B. J.; Guo, J.; An, A. K. Robust dual-layered omniphobic electrospun membrane with anti-wetting and anti-scaling functionalised for membrane distillation application. J. Membr. Sci. 2021 , 624 , 119089..
Gu, J.; Xiao, P.; Huang, Y.; Zhang, J.; Chen, T. Controlled functionalization of carbon nanotubes as superhydrophobic material for adjustable oil/water separation. J. Mater. Chem. A 2015 , 3 , 4124−4128..
Anvari, A.; Kekre, K. M.; Yancheshme, A. A.; Yao, Y.; Ronen, A. Membrane distillation of high salinity water by induction heated thermally conducting membranes. J. Membr. Sci. 2019 , 589 , 117253..
Gu, J.; Xiao, P.; Chen, J.; Liu, F.; Huang, Y.; Li, G.; Zhang, J.; Chen, T. Robust preparation of superhydrophobic polymer/carbon nanotube hybrid membranes for highly effective removal of oils and separation of water-in-oil emulsions. J. Mater. Chem. A 2014 , 2 , 15268−15272..
Dumée, L.; Germain, V.; Sears, K.; Schütz, J.; Finn, N.; Duke, M.; Cerneaux, S.; Cornu, D.; Gray, S. Enhanced durability and hydrophobicity of carbon nanotube bucky paper membranes in membrane distillation. J. Membr. Sci. 2011 , 376 , 241−246..
Zhu, Y.; Li, H.; Huang, W.; Lai, X.; Zeng, X. Facile fabrication of superhydrophobic wood aerogel by vapor deposition method for oil-water separation. Surf. Interfaces 2023 , 37 , 102746..
Ren, L. F.; Xia, F.; Shao, J.; Zhang, X.; Li, J. Experimental investigation of the effect of electrospinning parameters on properties of superhydrophobic PDMS/PM MA membrane and its application in membrane distillation. Desalination 2017 , 404 , 155−166..
Wang, J. l.; Ren, K. f.; Chang, H.; Zhang, S. m.; Jin, L. j.; Ji, J. Facile fabrication of robust superhydrophobic multilayered film based on bioinspired poly(dopamine)-modified carbon nanotubes. Phys. Chem. Chem. Phys. 2014 , 16 , 2936−2943..
Ioannou, D.; Shah, P.; Ellinas, K.; Kappl, M.; Sapalidis, A.; Butt, H.-J. r.; Gogolides, E. Antifouling Plasma-Treated Membranes with Stable Superhydrophobic Properties for Membrane Distillation. ACS Appl. Polym. Mater. 2023 , 5 , 9785−9795..
Yan, K.-K.; Jiao, L.; Lin, S.; Ji, X.; Lu, Y.; Zhang, L. Superhydrophobic electrospun nanofiber membrane coated by carbon nanotubes network for membrane distillation. Desalination 2018 , 437 , 26−33..
Ogihara, H.; Xie, J.; Saji, T. Spraying carbon nanotube dispersions to prepare superhydrophobic films. J. Mater. Sci. 2014 , 49 , 3183−3188..
Zhang, W.; Wang, Z.; Li, B. Omniphobic membrane with nest-like re-ent rant structure via electrospraying strategy for robust membrane distillation. J. Membr. Sci. 2021 , 640 , 119824..
Li, H.; Feng, H.; Li, M.; Zhang, X. Engineering a covalently constructed superomniphobic membrane for robust membrane distillation. J. Membr. Sci. 2022 , 644 , 120124..
Shi, D.; Gong, T.; Qing, W.; Li, X.; Shao, S. Unique behaviors and mechanism of highly soluble salt-induced wetting in membrane distillation. Environ. Sci. Technol. 2022 , 56 , 14788−14796..
[Waly, T.; Kennedy, M. D.; Witkamp, G. J.; Amy, G.; Schippers, J. C. Will calcium carbonate really scale in seawater reverse osmosis Desalin. Water Treat . 2009, 5 , 146-152..
Warsinger, D. M.; Swaminathan, J.; Guillen-Burrieza, E.; Arafat, H. A.; Lienhard V, J. H. Scaling and fouling in membrane distillation for desalination applications: a review. Desalination 2015 , 356 , 294−313..
Gryta, M. Calcium sulphate scaling in membrane distillation process. Chem. Pap. 2009 , 63 , 146−151..
Gryta, M. Fouling in direct contact membrane distillation process. Desalination 2008 , 325 , 383−394..
Li, W.; Amirfazli, A. Microtextured superhydrophobic surfaces: a thermodynamic analysis. Adv. Colloid Interface Sci. 2007 , 132 , 51−68..
Karanikola, V.; Boo, C.; Rolf, J.; Elimelech, M. Engineered slippery surface to mitigate gypsum scaling in membrane distillation for treatment of hypersaline industrial wastewaters. Environ. Sci. Technol. 2018 , 52 , 14362−14370..
Gryta, M. Alkaline scaling in the membrane distillation process. Nanoscale 2008 , 228 , 128−134..
The trial reading is over, you can activate your VIP account to continue reading.
Fluorinated Monodisperse Microporous Microspheres: Formation Mechanism, Assembly, and Molecular Separation
Utilizing Multilayer Design of Organic-Inorganic Hybrids to Enhance Wearable Strain Sensor in Humid Environment
Superhydrophobic PVDF/TiO2-SiO2 Membrane with Hierarchical Roughness in Membrane Distillation for Water Recovery from Phenolic Rich Solution Containing Surfactant
Related Author
Zhi-Yong Chen
Xin-Qi Wang
Xiao-Li Huang
Xin-Xin Qiu
Xin-Rui Xu
Si-Yu Wang
Robert K. Y. Li
Hui Zhao
Related Institution
Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan
Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University
Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University
Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon
School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal14300, Penang