

FOLLOWUS
a.State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation//Southwest Petroleum University, Chengdu 610500, China
b.School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
c.China Petroleum Engineering Construction Corporation Southwest Branch, Chengdu 610000, China
yhlin28@163.com
Received:31 July 2025,
Accepted:31 October 2025,
Published Online:12 December 2025,
Published:2025-11
Scan QR Code
Zhang, H. L.; Hu, W. T.; Xiao, J.; Li, T. L.; Lin, Y. H. Revealing the hydrogen permeation mechanism in polyetheretherketone and polytetrafluoroethylene: from experimental validation to molecular-level interpretation. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3483-7
Hong-Lin Zhang, Wen-Tao Hu, Jie Xiao, et al. Revealing the Hydrogen Permeation Mechanism in Polyetheretherketone and Polytetrafluoroethylene: From Experimental Validation to Molecular-level Interpretation[J/OL]. Chinese journal of polymer science, 2025, 431-20.
Zhang, H. L.; Hu, W. T.; Xiao, J.; Li, T. L.; Lin, Y. H. Revealing the hydrogen permeation mechanism in polyetheretherketone and polytetrafluoroethylene: from experimental validation to molecular-level interpretation. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3483-7 DOI:
Hong-Lin Zhang, Wen-Tao Hu, Jie Xiao, et al. Revealing the Hydrogen Permeation Mechanism in Polyetheretherketone and Polytetrafluoroethylene: From Experimental Validation to Molecular-level Interpretation[J/OL]. Chinese journal of polymer science, 2025, 431-20. DOI: 10.1007/s10118-025-3483-7.
This study integrates experimental investigation with molecular dynamics simulations to elucidate the hydrogen transport mechanisms in polyetheretherketone (PEEK) and polytetrafluoroethylene (PTFE)
offering fundamental insights into the barrier properties of high-performance polymeric materials. Experimental results demonstrate that PEEK exhibits superior hydrogen barrier performance compared to PTFE at both ambient and elevated temperatures. However
detailed molecular dynamics simulations uncover a distinctive
enthalpy-driven "high solubility-low diffusivity" transport mechanism: althou
gh PEEK displays higher hydrogen solubility due to its stronger thermodynamic affinity
its diffusion coefficient is markedly lower than that of PTFE. This mechanism remains operative across a broad operational temperature range (–40 °C to 85 °C)
yet its influence on overall permeability is strongly temperature-dependent. At room and high temperatures
the exceptionally low diffusivity of PEEK governs the entire permeation process
establishing its effectiveness as a high-performance hydrogen barrier material. In contrast
under low-temperature conditions
(e.g
.
–40°C)
the general suppression of diffusion allows the high solubility of PEEK to dominate
resulting in greater overall permeability than PTFE and giving rise to a performance “reversal” phenomenon. This distinct transport behavior originates from the strong non-covalent interactions between hydrogen molecules and the aromatic rings as well as polar functional groups present in the amorphous regions of PEEK
which simultaneously enhance solubility and impose significant kinetic energy barriers. The "structure-mechanism" correlation framework established in this work provides a robust theoretical foundation for the rational design of next-generation hydrogen barrier materials tailored to specific operational temperature requirements.
Zhang, L.; Jia, C. Q.; Bai, F. Q.; Wang, W. S.; An, S. Y.; Zhao, K. Y.; Li, Z. H.; Li, J. J.; Sun, H. A comprehensive review of the promising clean energy carrier: hydrogen production, transportation, storage, and utilization (HPTSU) technologies. Fuel 2024 , 355 , 129455..
Wang, H. T.; Tong, Z.; Zhou, G. J.; Zhang, C.; Zhou, H. Y.; Wang, Y.; Zhen g, W. Y. Research and demonstration on hydrogen compatibility of pipelines: a review of current status and challenges. Int. J. Hydrogen Energy 2022 , 47 , 28585−28604..
Lonsdale, H. K.; Merten, U.; Riley, R. L. Transport properties of cellulose acetate osmotic membranes. J. Appl. Polym. Sci. 1965 , 9 , 1341−1362..
Vrentas, J. S.; Duda, J. L.; Ling, H. C. Free-volume theories for self-diffusion in polymer–solvent systems. I. Conceptual differences in theories. J. Polym. Sci., Polym. Phys. Ed. 1985 , 23 , 275−288..
Fang, Q.; Ji, D. M. Molecular simulation of hydrogen permeation behavior in liner polymer materials of Type Ⅳ hydrogen storage vessels. Mater. Today Commun. 2023 , 35 , 106302..
Monson, L.; Moon, S. I.; Extrand, C. W. Permeation resistance of poly (ether ether ketone) to hydrogen, nitrogen, and oxygen gases. J. Appl. Polym. Sci. 2013 , 127 , 1637−1642..
Sebők, B.; Schülke, M.; Réti, F.; Kiss, G. Diffusivity, permeability and solubility of H 2 , Ar, N 2 , and CO 2 in poly (tetrafluoroethylene) between room temperature and 180 °C. Polym. Test. 2016 , 49 , 66−72..
Gupta, R.; Shinde, S.; Yella, A.; Subramaniam, C.; Saha, S. K. Thermomechanical characterisations of PTFE, PEEK, PEKK as encapsulation materials for medium temperature solar applications. Energy 2020 , 194 , 116921..
Mou, W. J.; He, G. M.; Zhou, C. L.; Gan, B.; Liu, Y. L.; Shi, S. S.; Xia, M. L. Molecular dynamics study on hydrogen permeation behavior and mechanism in polyethylene type IV hydrogen storage cylinder liner. J. Chem. Phys. 2025 , 162 , 234703..
Zheng, D. K.; Li, J. F.; Yu, B.; Yang, Y. F.; Huang, Z. Q.; Zhang, Y. D.; Liu, C. W. Grand canonical Monte Carlo and molecular dynamics investigation of hydrogen solubility and diffusivity in nonmetallic polyvinyl chloride, polyethylene and polyvinylidene fluoride pipes materials. Fuel 2024 , 362 , 130925..
Zheng, D. K.; Li, J. F.; Liu, B.; Yu, B.; Yang, Y. F. Molecular dynamics investigations into the hydrogen permeation mechanism of polyethylene pipeline material. J. Mol. Liq. 2022 , 368 , 120773..
Tian, W. X.; Gong, L. D.; Yu, C. Y.; Zhou, Y. F. A molecular dynamics simulation study on hydrocarbon ladder polymer membranes for gas separation. Phys. Chem. Chem. Phys. 2025 , 27 , 5832−5842..
[ASTM International. ASTM D1434-82(Reapproved 2009), Standard test method for determining gas permeability characteristics of plastic film and sheeting. West Conshohocken, PA: ASTM International; 2009 .
Jung, J. K.; Kim, K. T.; Chung, K. S. Two volumetric techniques for determining the transport properties of hydrogen gas in polymer. Mater. Chem. Phys. 2022 , 276 , 125364..
Fujiwara, H.; Ono, H.; Onoue, K.; Nishimura, S. High-pressure gaseous hydrogen permeation test method-property of polymeric materials for high-pressure hydrogen devices (1). Int. J. Hydrogen Energy 2020 , 45 , 29082−29094..
Jang, J. S.; Kim, C.; Chung, N. K. Temperature-dependence study on the hydrogen transport properties of polymers used for hydrogen infrastructure. Appl. Sci. Converg. Technol. 2021 , 30 , 163−166..
[Li, J. F.; Yu, B.; Zheng, D. K.; Yang, Y. F.; Qiao, J.; Cai, H.; Zhang, Y. Q.; Jiang, X.; Numerical and experimental study on hydrogen permeation law of hydrogen-blended natural gas in urban gas polyethylene pipelines. Int. J. Hydrogen Energy 2025 , 123 , 321-334..
Hafner, T.; Macher, J.; Brandstätter, S.; Trattner, A. Advancing hydrogen storage: Development and verification of a high-pressure permeation test setup for polymeric barrier materials. Int. J. Hydrogen Energy 2024 , 96 , 882−891..
Alirezaie, A. H. H.; Navarchian, A. H.; Sabzyan, H. Molecular dynamics simulation of gas diffusion in polyethylene-clay nanocomposites with different silicate layers configurations. Polym. Sci. Ser. A. 2016 , 58 , 487−498..
Li, J.; Zhao, X. K.; Liang, J. G.; Zhao, C. J.; Feng, N.; Guo, G. Y.; Zhou, Z. Z. Molecular dynamics simulation of hydrogen barrier performance of modified polyamide 6 lining of iv hydrogen storage tank with graphene. Polymers 2024 , 16 , 2185..
[GB/T 42612-2023; Fully-wrapped carbon fiber reinforced cylinders with a plastic liner for the on-board storage of compressed hydrogen as a fuel for land vehicles. China gas cylinder standardization technical committee (TC31SC8), Beijing, China, 2023 .
Li, Y. F.; Barzagli, F.; Liu, P.; Zhang, X. A.; Yang, Z.; Xiao, M.; Huang, Y. Q.; Luo, X.; Li, C. E.; Luo, H. A.; Zhang, R. Mechanism and evaluation of hydrogen permeation barriers: a critical review. Ind. Eng. Chem. Res. 2023 , 62 , 15752−15773..
Kucukpinar, E.; Doruker, P. Molecular simulations of small gas diffusion and solubility in copolymers of styrene. Polymer 2003 , 44 , 3607−3620..
Wang, Y.; Chen, J. H.; Li, Z.; Yang, S. L.; Zhu, J. Q. Oriented-attachment-driven heteroepitaxial growth during early coalescence of single-crystal diamond on iridium: a combined multiscale simulation and experimental validation. Crystals 2025 , 15 , 803..
Liu, C. S.; Pilania, G.; Wang, C. C.; Ramprasad, R. How critical are the van der Waals interactions in polymer crystals. J. Phys. Chem. A. 2012 , 116 , 9347−9352..
Bursch, M.; Mewes, J. M.; Hansen, A.; Grimme, S. Best-practice DFT protocols for basic molecular computational chemistry. Angew. Chem., Int. Ed. 2022 , 134 , e202205735..
Masumian, E.; Boese, A. D. Benchmarking swaths of intermolecular interaction components with symmetry-adapted perturbation theory. J. Chem. Theory Comput. 2023 , 20 , 30−48..
[Thiemann, N. Using computational tools to design a moleculary imprinted polymer with selectivity and high affinity for acetylcholine. Trinity College, Hartford, Connecticut, 2017 .
Papchenko, K.; Ricci, E.; De Angelis, M. G. Modelling across multiple scales to design biopolymer membranes for sustainable gas separations: 1—atomistic approach. Polymers 2023 , 15 , 1805..
Belmares, M.; Blanco, M.; Goddard, W. A., III; Ross, R. B.; Caldwell, G.; Chou, S. H.; Pham, J.; Olofson, P. M.; Thomas, C. Hildebrand and Hansen solubility parameters from molecular dynamics with applications to electronic nose polymer sensors. J. Comput. Chem. 2004 , 25 , 1814−1826..
Zheng, X.; Guo, Y. F.; Douglas, J. F.; Xia, W. Competing effects of cohesive energy and cross-link density on the segmental dynamics and mechanical properties of cross-linked polymers. Macromolecules 2022 , 55 , 9990−10004..
Tao, L.; He, J.; Arbaugh, T.; McCutcheon, J. R.; Li, Y. Machine learning prediction on the fractional free volume of polymer membranes. J. Membr. Sci. 2023 , 665 , 121131..
McIntosh, E. M.; Wikfeldt, K. T.; Ellis, J.; Michaelides, A.; Allison, W. Quantum effects in the diffusion of hydrogen on Ru (0001). J. Phys. Chem. Lett. 2013 , 4 , 1565−1569..
Charles, J. Qualitative analysis of high density polyethylene using FTIR spectroscopy. Asian J. Chem. 2009 , 21 , 4477..
Hajianzadeh, M.; Mahmoudi, J.; Sadeghzadeh, S. Molecular dynamics simulations of methane adsorption and displacement from graphenylene shale reservoir nanochannels. Sci. Rep. 2023 , 13 , 15765..
[Liu, G. J. Pr eparation process and gas barrier mechanism of graphene reinforced polyethylene composites. Harbin Institute of Technology, 2022 .
Müller-Plathe, F.; Laaksonen, L.; van Gunsteren, W. F. Cooperative effects in the transport of small molecules through an amorphous polymer matrix. J. Mol. Graphics. 1993 , 11 , 118..
Su, Y. Y.; Lv, H.; Zhou, W.; Zhang, C. M. Review of the hydrogen permeability of the liner material of type IV on-board hydrogen storage tank. World Electric Vehicle Journal. 2021 , 12 , 130..
[Roilo, D. Gas transport properties and free volume structure of polymer nanocomposite membranes. Università degli Studi di Trento, 2017 .
White, R. P.; Lipson, J. E. G. Free volume,cohesive energy density, and internal pressure as predictors of polymer miscibility. Macromolecules 2014 , 47 , 3959−3968..
Vyazovkin, S. Activation energies and temperature dependencies of the rates of crystallization and melting of polymers. Polymers 2020 , 12 , 1070..
Galizia, M.; Smith, Z. P.; Sarti, G. C.; Freeman, B. D.; Paul, D. R. Predictive calculation of hydrogen and helium solubility in glassy and rubbery polymers. J. Membr. Sci. 2015 , 475 , 110−121..
Lasseuguette, E.; Malpass-Evans, R.; Carta, M.; McKeown, N. B.; Ferrari, M. C. Temperature and pressure dependence of gas permeation in a microporous Tröger’s base polymer. Membranes 2018 , 8 , 132..
[Zhou, C. L.; Xia, M. L.; Wang, H. X.; Gan, B.; Liu, Y. L.; Hua, Z. L. Molecular dynamics insights into the influence of carbon black on hydrogen permeation in rubber seals for hydrogen infrastructure. Polym. Compos . 2025 ..
Tan, J. H.; Chen, C.; Liu, Y.; Wu, J. Y.; Wu, D.; Zhang, X.; He, X. Y.; She, Z. H.; He, R.; Zhang, H. L. Molecular simulations of gas transport in hydrogenated nitrile butadiene rubber and ethylene–propylene–diene rubber. RSC Adv. 2020 , 10 , 12475−12484..
Sun, Y.; Lv, H.; Zhou, W.; Zhang, C. M. Research on hydrogen permeability of polyamide 6 as the liner material for type Ⅳ hydro gen storage tank. Int. J. Hydrogen Energy 2020 , 45 , 24980−24990..
Tan, J. H.; Chen, C. L.; Liu, Y. W.; Wu, J. Y.; Wu, D.; Zhang, X.; She, Z. H.; He, R.; Zhang, H. L. Molecular simulations of gas transport in hydrogenated nitrile butadiene rubber. J. Polym. Res. 2020 , 27 , 277..
Zhao, J. W.; Li, X. F.; Wang, X. G.; Zhang, Q.; Yang, Q. Q.; Yin, H.; Zhang, S. J.; Wu, C. J. Insights into the solubility of H 2 in various polyethylene matrices at high pressure: a coarse-grained MC/MD study. Int. J. Hydrogen Energy 2023 , 48 , 19619−19632..
Luo, M.; Putnam, Z. A.; Incavo, J.; Krishnan, S. Molecular simulations and experimental characterization of fluorinated nitrile butadiene elastomers with low H2S permeability. Ind. Eng. Chem. Res. 2019 , 58 , 14823−14838..
Fujiwara, H.; Ono, H.; Ohyama, K.; Kasai, M.; Kaneko, F.; Nishimura, S. Hydrogen permeation under high pressure conditions and the destruction of exposed polyethylene-property of polymeric materials for high-pressure hydrogen devices (2). Int. J. Hydrogen Energy 2021 , 46 , 11832−11848..
Takeuchi, K.; Kuo, A. T.; Hirai, T.; Miyajima, T.; Urata, S.; Terazono, S.; Okazaki, S.; Shinoda, W. Hydrogen permeation in hydrated perfluorosulfonic acid polymer membranes: effect of polymer crystallinity and equivalent weight. J. Phys. Chem. C 2019 , 123 , 20628−20638..
Kanesugi, H.; Ohyama, K.; Fujiwara, H.; Nishimura, S. High-pressure hydrogen permeability model for crystalline polymers. Int. J. Hydrogen Energy 2023 , 48 , 723−739..
Hernández-Bravo, R.; Oviedo-Roa, R.; Martínez-Magadán, J. M.; Aguilar-Cisneros, H.; Domínguez-Esquivel, J. M. H 2 solubility in hydrocarbons calculated by the COSMO-RS method. Ind. Eng. Chem. Res. 2019 , 58 , 12361−12368..
Varadwaj, P. R. Combined molecular dynamics and DFT simulation study of the molecular and polymer properties of a catechol-based cyclic oligomer of polyether ether ketone. Polymers 2020 , 12 , 1054..
Patchkovskii, S.; Tse, J. S.; Yurchenko, S. N.; Zhechkov, L.; Heine, T.; Seifert, G. Graphene nanostructures as tunable storage media for molecular hydrogen. Proc. Natl. Acad. Sci. U. S. A. 2005 , 102 , 10439−10444..
Ma, J.; Michaelides, A.; Alfè, D. Binding of hydrogen on benzene, coronene, and graphene from quantum Monte Carlo calculations. J. Chem. Phys. 2011 , 134 , 134701..
Fatti, G.; Righi, M. C.; Dini, D.; Ciniero, A. First-principles insights into the structural and electronic properties of polytetrafluoroethylene in its high-pressure phase (Form III). J. Phys. Chem. C 2019 , 123 , 6250−6255..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621