An Excellent Biobased Copolymerization Monomer Module: Synthesis of Biobased Copolymers with Excellent Heat Resistance and Hydrophilic Properties
RESEARCH ARTICLE|Updated:2025-10-23
|
An Excellent Biobased Copolymerization Monomer Module: Synthesis of Biobased Copolymers with Excellent Heat Resistance and Hydrophilic Properties
Chinese Journal of Polymer ScienceVol. 43, Pages: 2102-2109(2025)
Affiliations:
School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832000, China
Ma, X. J.; Hao, X. Q.; Wang, H. J.; Yao, H. Y.; Wang, Z. Q.; Lv, Y. An excellent biobased copolymerization monomer module: synthesis of biobased copolymers with excellent heat resistance and hydrophilic properties. Chinese J. Polym. Sci. 2025, 43, 2102–2109
Xiao-Jun Ma, Xiao-Qing Hao, Hong-Ji Wang, et al. An Excellent Biobased Copolymerization Monomer Module: Synthesis of Biobased Copolymers with Excellent Heat Resistance and Hydrophilic Properties[J/OL]. Chinese journal of polymer science, 2025, 432102-2109.
Ma, X. J.; Hao, X. Q.; Wang, H. J.; Yao, H. Y.; Wang, Z. Q.; Lv, Y. An excellent biobased copolymerization monomer module: synthesis of biobased copolymers with excellent heat resistance and hydrophilic properties. Chinese J. Polym. Sci. 2025, 43, 2102–2109 DOI: 10.1007/s10118-025-3433-4.
Xiao-Jun Ma, Xiao-Qing Hao, Hong-Ji Wang, et al. An Excellent Biobased Copolymerization Monomer Module: Synthesis of Biobased Copolymers with Excellent Heat Resistance and Hydrophilic Properties[J/OL]. Chinese journal of polymer science, 2025, 432102-2109. DOI: 10.1007/s10118-025-3433-4.
An Excellent Biobased Copolymerization Monomer Module: Synthesis of Biobased Copolymers with Excellent Heat Resistance and Hydrophilic Properties
Incorporation of CBPC units markedly enhances PBCC copolymers’ thermal stability (Tm 225.8 °C
Td₅% 306.7 °C) and imparts excellent hydrophilicity
enabling a hydrophobic-to-hydrophilic transition. This work proposes a new strategy for designing high-performance bio-based polyesters
reducing reliance on finite fossil resources.
Abstract
The use of biomass feedstocks for the manufacture of high-performance polymers can help expand their range of applications and reduce their dependence on finite fossil resources. However
improving the heat resistance and hydrophilicity of bio-based polyesters remains a significant challenge. Herein
a novel bio-based tricyclic dibasic ester synthesized from renewable dimethyl itaconic acid and
trans
-1
4-cyclohexane diamine
via
an aza-Michael additio
n reaction. As a unique comonomer
CBPC features a rigid tricyclic backbone that significantly enhances chain packing and thermal stability
whereas its pyrrolidone side groups impart tunable polarity and improved hydrophilicity. Using CBPC
diphenyl carbonate
and 1
4-butylene glycol
a series of PBCC copolymers with 10 mol%–30 mol% CBPC was synthesized
via
ester-exchange and melt polycondensation methods. Incorporation of CBPC raised the melting temperature (
T
m
) from 56.8 °C to 225.8 °C and the initial decomposition temperature (
T
d5%
) from 258.0 °C to 306.7 °C
positioning PBCC among the most heat-resistant bio-based polyesters reported. Additionally
the pyrrolidone units enabled transformation from hydrophobic to hydrophilic. This study demonstrates that CBPC is an effective and innovative building block for the design of bio-based polymers with enhanced thermal and surface properties
offering a promising strategy for the development of high-performance sustainable materials.
关键词
Keywords
references
Krajovic, D. M.; Kumler, M. S.; Hillmyer, M. A. PLA block polymers: versatile materials for a sustainable future. Biomacromolecules. 2025 , 26 , 2761−2783..
[Tahara, A.; Yashiro, S.; Hokajo, T.; Kudo, S.; Yoshizaki, Y.; Konno, T.; Doi, T. Stereoselective polycondensation of levoglucosenone leading to water-degradable biopolymers. Polym. Chem . 2025 , 16 , 800−808..
[Ma, X.; Wang, H.; Wang, Z.; Lv, Y .; Wei, Z. Synthesis and properties of biodegradable thiophene-based aliphatic polycarbonate/polyester copolymer: potential substitutes for terephthalic acid-based polymer. Eur. Polym. J . 2024 , 210 , 112972..
Kasmi, N.; Pinel, C.; Da Silva Perez, D.; Dieden, R.; Habibi, Y. Synthesis and characterization of fully biobased polyesters with tunable branched architectures. Polym. Chem. 2021 , 12 , 991−1001..
[Rajalakshmi, P.; Marie, J. M.; Maria Xavier, A. J. Castor oil-derived monomer ricinoleic acid based biodegradable unsaturated polyesters. Polym. Degrad. Stabil . 2019 , 170 , 109016..
[Feng, J.; Li, J.; Feng, J.; Wei, Z.; Wang, Z.; Song, X. Synthesis of aliphatic polycarbonates from diphenyl carbonate and diols over Zinc (II) acetylacetonate. Molecules 2022 , 27 , 8958..
Cai, X.; Yang, X.; Zhang, H.; Wang, G. Modification of biodegradable poly(butylene carbonate) with 1,4-cyclohexanedimethylene to enhance the thermal and mechanical properties. Polym. Degrad. Stabli. 2017 , 143 , 35−41..
Cai, X.; Yang, X.; Zhang, H.; Wang, G. Aliphatic-aromatic poly(carbonate- co -ester)s containing biobased furan monomer: synthesis and thermo-mechanical properties. Polymer 2018 , 134 , 63−70..
Zhu, C.; Liu, S.; Wang, Q.; Zhang, H.; Wang, G. Synthesis and properties of poly(butylene carbonate-co-spirocyclic carbonate). Chem. Res. Chin. Univ. 2019 , 35 , 729−734..
Chen, Y.; Wu, L.; Li, B. G. Colorless transparent cyclobutanediol-based copolyesters with excellent polymerization robustness, thermal stability, and high performance. ACS. Appl. Polym. Mater. 2022 , 4 , 2006−2016..
Liu, L.; Tu, Z.; Lu, Y.; Wei, Z. Scale synthesis of poly(butylene carbonate-co-terephthalate) and Its depolymerization–repolymerization recycling process. Ind. Eng. Chem. Res. 2023 , 62 , 4260−4270..
Würdemann, M. A.; Faber, T.; Harings, J. A. W.; Bernaerts, K. V.; Orru, R. V. A.; Pich, A. Post-modification of biobased pyrazines and their polyesters. Macromolecules 2021 , 54 , 10850−10859..
van der Maas, K.; Wang, Y.; Weinland, D. H.; van Putten, R.-J.; Wang, B.; Gruter, G. J. M. PISOX copolyesters─bio- and CO2-based marine-degradable high-performance polyesters. ACS Sustain. Chem. Eng. 2024 , 12 , 9822−9832..
Wang, H.; Ma, X.; Yao, H.; Chang, H.; Lv, Y.; Wei, Z. Synthesis of degradable polyester with high molecular weight and excellent mechanical properties through copolymerization modification of poly(butylene succinate). Polym. Chem. 2024 , 15 , 4570−4579..
Sahu, P.; Sharma, L.; Dawsey, T.; Gupta, R. K. Fully biobased high-molecular-weight polyester with impressive elasticity, thermo-mechanical properties, and enzymatic biodegradability: replacing terephthalate. Macromolecules 2024 , 57 , 9302−9314..
[Yu, Y.; Liu, S.; Liu, H.; Wei, Z. A renewable tricyclic building block towards synthesis of biobased polyesters with high-performance and hydrolyzability. Polym. Degrad. Stabil . 2023 , 217 , 110514..
Zeng, C.; Ren, J.; Shen, W.; Zhang, S.; Ji, P.; Wang, C.; Wang, H. Synthesis of thermal-resistant polyester-polycarbonate with fully rigid st ructure from biobased isosorbide. Macromolecules 2024 , 57 , 6284−6294..
Wang, Y.; Xie, R.; Xu, J.; Li, Z.; Guo, M.; Yang, F.; Wu, J.; Wang, H. Strong, tough, and heat-resistant isohexide-based copolycarbonates: an ecologically safe alternative for bisphenol-a polycarbonate. ACS Sustain. Chem. Eng. 2024 , 12 , 7553−7565..
Zhang, Z.; Xu, F.; Zhang, Y.; Li, C.; He, H.; Yang, Z.; Li, Z. A non-phosgene process for bioderived polycarbonate with high molecular weight and advanced property profile synthesized using amino acid ionic liquids as catalysts. Green Chem. 2020 , 22 , 2534−2542..
Morand, C.; Mantione, D.; Dove, A. P.; Sardón, H.; Jehanno, C. Controlling the cis/trans content of biobased unsaturated polyesters by judicious choice of a biosourced catalyst. ACS Sustain. Chem. Eng. 2025 , 13 , 6176−6185..
Han, C.; Liu, J.; Li, C.; Xiao, Y.; Wu, S.; Du, M. FDCA bio-based copolyester PBFA: synthesis, properties, and fluorescence regulation. Polym. Chem. 2025 , 16 , 2254−2262..
[Li, J.; Yu, Y.; Zhang, X. Synthesis of renewable and seawater-degradable polyesters based on a fully biobased diester. Polym. Degrad. Stabil . 2024 , 230 , 111015..
[Zhang, X.; Yin, M.; Wang, J.; Pang, C.; Liu, X.; Zhu, J. Biobased high barrier copolyesters derived from furandicarboxylic acid and citric acid. Eur. Polym. J . 2024 , 213 , 113075..
[Zarei, M.; El Fray, M. Synthesis of Hydrophilic Poly(butylene succinate-butylene dilinoleate) (PBS-DLS) copolymers containing poly(ethylene glycol) (PEG) of variable molecular weights. Polymers 2021 , 13 , 3177..
[Zhu, H.; Hu, H.; Luan, Q.; Lin, C.; Xu, J.; Wang, J.; Ying, W. B.; Zhu, J. Highly crystalline, heat resistant and biodegradable copolyesters from fully bio-based bis(pyrrolidone) monomer. Giant 2024 , 18 , 100276..
Yu, Y.; Liu, S.; Wei, Z. Improving Thermal, Mechanical, and crystalline properties of poly(butylene succinate) copolyesters from a renewable rigid diester. ACS Sustain. Chem. Eng. 2023 , 11 , 15091−15101..
Yu, Y.; Liu, H.; Li, J.; Song, H.; Wei, Z. Tricyclic diester and 2,5-furandicarboxylic acid for the synthesis of biobased hydrolysis copolyesters with high glass transition temperatures. Biomacromolecules 2023 , 24 , 5105−5115..
Hu, H.; Li, J.; Tian, Y.; Chen, C.; Li, F.; Ying, W. B.; Zhang, R.; Zhu, J. Experimental and theoretical study on glycolic acid provided fast bio/seawater-degradable poly(butylene succinate- co -glycolate). ACS Sustain. Chem. Eng. 2021 , 9 , 3850−3859..
Park, S.-A.; Choi, J.; Ju, S.; Jegal, J.; Lee, K. M.; Hwang, S. Y.; Oh, D. X.; Park, J. Copolycarbonates of bio-based rigid isosorbide and flexible 1,4-cyclohexanedimethanol: merits over bisphenol-a based polycarbonates. Polymer 2017 , 116 , 153−159..
Synthesis and Characterization of α-End Functionalized 3,4-Polyisoprene Using Fe(acac)3/IITP/AliBu3 Catalyst
Synthesis and Properties of Heat-resistant Polyimides Films Containing Crosslinkable Group-tetrafluorostyrene
Preparation and Characterization of Cyano-Silicon-Containing Arylacetylene Resins and Their Composites: Dual Enhancement Strategy Involving Physical Interfacial Interactions and Chemical Crosslinking
Related Author
Yu-Fan Sun
Ying-Nan Zhao
Shi-Liang Xu
Yao Yu
Liang Fang
Li-Hua Na
Qi Yang
Feng Wang
Related Institution
Key Lab of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Lab of Rubber-plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology
Shandong Provincial College Laboratory of Rubber Material and Engineering, School of Polymer Science and Engineering, Qingdao University of Science & Technology
School of Polymer Science and Engineering, Qingdao University of Science & Technology
Tianjin Engineering Research Center of Functional Fine Chemicals
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)