

FOLLOWUS
a.School of Materials Engineering, Jiangsu University of Technology, Changzhou 213001, China
b.State and Local Joint Engineering Laboratory for Novel Functional Department Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
c.Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-bis, 9000 Ghent, Belgium
d.Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
chemzhujian@suda.edu.cn (J.Z.)
filip.duprez@ugent.be (F.E.D.P.)
panxq@suda.edu.cn (X.Q.P.)
Received:21 May 2025,
Accepted:18 July 2025,
Published Online:11 October 2025,
Published:05 November 2025
Scan QR Code
Chen, S. S.; Scholiers, V.; Chen, H.; An, X. W.; Li, J. J.; Zhu, J.; Prez, F. E. D.; Pan, X. Q. Transparent polyurethane coating with selenonium salt-enhanced healing and antibacterial properties. Chinese J. Polym. Sci. 2025, 43, 2022–2029
Si-Si Chen, Vincent Scholiers, Hong Chen, et al. Transparent Polyurethane Coating with Selenonium Salt-enhanced Healing and Antibacterial Properties[J]. Chinese journal of polymer science, 2025, 43(11): 2022-2029.
Chen, S. S.; Scholiers, V.; Chen, H.; An, X. W.; Li, J. J.; Zhu, J.; Prez, F. E. D.; Pan, X. Q. Transparent polyurethane coating with selenonium salt-enhanced healing and antibacterial properties. Chinese J. Polym. Sci. 2025, 43, 2022–2029 DOI: 10.1007/s10118-025-3414-7.
Si-Si Chen, Vincent Scholiers, Hong Chen, et al. Transparent Polyurethane Coating with Selenonium Salt-enhanced Healing and Antibacterial Properties[J]. Chinese journal of polymer science, 2025, 43(11): 2022-2029. DOI: 10.1007/s10118-025-3414-7.
Dynamic selenonium salts were strategically integrated into transparent polyurethane (PU) matrices
endowing the coatings with dual functionality: self-healing and antibacterial properties. Through systematically optimizing the selenonium salt concentration
the PU coatings achieved maximal antibacterial efficacy while retaining their intrinsic self-healing properties.
In this study
dynamic selenonium salts were incorporated into a polyurethane (PU) matrix to develop transparent
healable and antibacterial coatings. Through systematic formulation optimization
optically clear materials with excellent room-temperature hardness were obtained. Fine-tuning the selenonium content established a synergy between antibacterial performance and network dynamics
as evidenced by vitrimer-like rheological behavior at elevated temperatures. Consequently
the coatings exhibited outstanding reprocessability while maintaining high transparency and structural stability after prolonged saltwater exposure. These integrated features underscore the potential of the developed cationic PU coatings as robust
multifunctional materials for electronic device protection and marine antifouling
combining long-term transparency
recyclability
and antibacterial durability.
Li, D. W.; Wang, H. Y.; Liu, Y.; Wei, D. S.; Zhao, Z. X. Large-scale fabrication of durable and robust super-hydrophobic spray coatings with excellent repairable and anti-corrosion performance. Chem. Eng. J. 2019 , 367 , 169−179..
Wang, T.; Wang, W.; Feng, H.; Sun, T.; Ma, C.; Cao, L.; Qin, X.; Lei, Y.; Piao, J.; Feng, C.; Cheng, Q.; Chen, S. Photothermal nanofiller-based polydimethylsiloxane anticorrosion coating with multiple cyclic self-healing and long-term self-healing performance. Chem. Eng. J. 2022 , 446 , 137077..
Han, Y.; Yan, X.; Tao, Y. Effect of number of impregnations of microberlinla sp with microcapsule emulsion on the performance of self-repairing coatings on wood surfaces. Coatings 2022 , 12 , 989..
Engels, H. W.; Pirkl, H. G.; Albers, R.; Albach, R. W.; Krause, J.; Hoffmann, A.; Casselmann, H.; Dormish, J. Polyurethanes: Versatile materials and sustainable problem solvers for today's challenges. Angew. Chem. Int. Ed. 2013 , 52 , 9422−9441..
Chen, K.; Zhu, H.; Zhang, Z.; Shao, Y.; Yu, Q.; Cao, X.; Pan, S.; Mu, X.; Gao, Z.; Wang, D.; Wei, S.; Han, S. Self-healing polyurethane coatings based on dynamic chemical bond synergy under conditions of photothermal response. Chem. Eng. J. 2023 , 474 , 145811..
van Dam, A.; Pujari, S. P.; Smulders, M. M. J.; Zuilhof, H. Fluorine-free hydrophobic polymer brushes for self-healing coatings. ACS Appl. Nano Mater. 2024 , 7 , 19737−19744..
Moraru, D.; Chícharo, B.; Trapasso, G.; Fadlallah, S.; Allais, F.; Aricò, F.; Sangermano, M. Thiol-ene uv-cured biodegradable coatings from α,ω-diene furanic monomers. ACS Appl. Polym. Mater. 2025 , 7 , 2073−2079..
Ren, Y.; Hubbard, A. M.; Austin, D.; Dai, J.; Li, C.; Hu, R.; Papaioannou, P.; Picu, C. R.; Konkolewicz, D.; Sarvestani, A.; Glavin, N.; Varshney, V.; Roy, A. K.; Tian, Z.; Nepal, D. Rapid photothermal healing of vitrimer nanocomposites activated by gold-nanoparticle-coated graphene nanoplatelets. ACS Appl. Nano Mater. 2024 , 7 , 18769−18778..
[Ma, Z.; Feng, J.; Huo, S.; Sun, Z.; Bourbigot, S.; Wang, H.; Gao, J.; Tang, L. C.; Zheng, W.; Song, P. Mussel-inspired, self-healing, highly effective fully polymeric fire-retardant coatings enabled by group synergy. Adv. Mater . 2024, e2410453..
Li, S.; van der Ven, L. G. J.; Garcia, S. J.; Esteves, A. C. C. Healable supracolloidal nanocomposite water-borne coatings. ACS Appl. Polym. Mater. 2024 , 6 , 8830−8841..
Guo, Z.; Bao, C.; Wang, X.; Lu, X.; Sun, H.; Li, X.; Li, J.; Sun, J. Room-temperature healable, recyclable and mechanically super-strong poly(urea-urethane)s cross-linked with nitrogen-coordinated boroxines. J. Mater. Chem. A 2021 , 9 , 11025−11032..
Choong, P. S.; Chong, N. X.; Wai Ta m, E. K.; Seayad, A. M.; Seayad, J.; Jana, S. Biobased nonisocyanate polyurethanes as recyclable and intrinsic self-healing coating with triple healing sites. ACS Macro Lett. 2021 , 10 , 635−641..
[Shang, B.; Zhan, Y.; Chen, M.;Wu, L. Nir triggered healable underwater superoleophobic coating with exceptional anti-biofouling performance. Appl. Surf. Sci . 2020, 528 , 146805..
[Odarczenko, M.; Thakare, D.; Li, W.; Venkateswaran, S. P.; Sottos, N. R.; White, S. R. Sunlight-activated self-healing polymer coatings. Adv. Eng. Mater . 2020 , 22 , 1901223..
[Hillewaere, X. K. D.; Du Prez, F. E. Fifteen chemistries for autonomous external self-healing polymers and composites. Prog. Polym. Sci . 2015 , 49-50 , 121−153..
Billiet, S.; Hillewaere, X. K. D.; Teixeira, R. F. A.; Du Prez, F. E. Chemistry of crosslinking processes for self-healing polymers. Macromol. Rapid Commun. 2013 , 34 , 290−309..
Fan, W.; Zhang, Y.; Li, W.; Wang, W.; Zhao, X.; Song, L. Multi-level self-healing ability of shape memory polyurethane coating with microcapsules by induction heating. Chem. Eng. J. 2019 , 368 , 1033−1044..
Hillewaere, X. K. D.; Teixeira, R. F. A.; Nguyen, L.-T. T.; Ramos, J. A.; Rahier, H.; Du Prez, F. E. Autonomous self-healing of epoxy thermosets with thiol-isocyanate chemistry. Adv. Funct. Mater. 2014 , 24 , 5575−5583..
Li, B.; Cao, P. F.; Saito, T.; Sokolov, A. P. Intrinsically self-healing polymers: From mechanistic insight to current challenges. Chem. Rev. 2023 , 123 , 701−735..
Chen, C.; Shen, T.; Yang, J.; Cao, W.; Wei, J.; Li, W. Room-temperature intrinsic self-healing materials: a review. Chem. Eng. J. 2024 , 498 , 155158..
[Deng, Y.; Zhang, Q.; Feringa, B. L. Dynamic chemistry toolbox for advanced sustainable materials. Adv. Sci . 2024, e2308666..
Yan, T.; Balzer, A. H.; Herbert, K. M.; Epps, T. H.; Korley, L. T. J. Circularity in polymers: Addressing performance and sustainability challenges using dynamic covalent chemistries. Chem. Sci. 2023 , 14 , 5243−5265..
Zheng, N.; Xu, Y.; Zhao, Q.; Xie, T. Dynamic covalent polymer networks: a molecular platform for designing functions beyond chemical recycling and self-healing. Chem. Rev. 2021 , 121 , 1716−1745..
Podgorski, M.; Fairbanks, B. D.; Kirkpatrick, B. E.; McBride, M.; Martinez, A.; Dobson, A.; Bongiardina, N. J.; Bowman, C. N. Toward stimuli-responsive dynamic thermosets through continuous development and improvements in covalent adaptable networks (cans). Adv. Mater. 2020 , 32 , 1906876..
Winne, J. M.; Leibler, L.; Du Prez, F. E. Dynamic covalent chemistry in polymer networks: A mechanistic perspective. Polym. Chem. 2019 , 10 , 6091−6108..
Caliari, M.; Vidal, F.; Mantione, D.; Seychal, G.; Campoy-Quiles, M.; Irusta, L.; Fernandez, M.; de Pariza, X. L.; Habets, T.; Aramburu, N.; Raquez, J. M.; Grignard, B.; Müller, A. J.; Detrembleur, C.; Sardon, H. Fully recyclable pluripotent networks for 3d printing enabled by dissociative dynamic bonds. Adv. Mater. 2025 , 37 , 2417355..
Tan, Y.; Xu, H. Selenium-containing dynamic materials: Structure programming through selective dissipation. Acc. Mater. Res. 2024 , 5 , 739−751..
Sangermano, M.; Bergoglio, M.; Schögl, S. Biobased vitrimeric epoxy networks. Macromol. Mater. Eng. 2024 , 309 , 2300371..
[Xiong, W.; Chen, B.; Peng, J.; Luo, X.; Pan, X.; Xiao, Z.; Gong, W.; Huang, Z.; Chu, Z.; Zhang, X.; Zhou, C.; Liu, Y. A dual-crosslinking strategy for waterborne polyurethane coatings to achieve outstanding anti-smudge and anti-corrosion properties. Chem. Eng. J . 2024, 490 , 151509..
[Liu, X.; Sun, J.; Duan, J.; Sui, K.; Zhai, X.; Zhao, X. AgNP composite silicone-based polymer self-healing antifouling coatings. Materials 2024, 17 , 4289..
Montemor, M. F. Functional and smart coatings for corrosion protection: a review of recent advances. Surf. Coat. Technol. 2014 , 258 , 17−37..
Joseph, J.; Patel, R. M.; Wenham, A.; Smith, J. R. Biomedical applications of polyurethane materials and coatings. Trans. IMF 2018 , 96 , 121−129..
Gong, Y.; Xu, X.; Aquib, M.; Zhang, Y.; Yang, W.; Chang, Y.; Peng, H.; Boyer, C.; Whittaker, A. K.; Fu, C. Ammonium, phosphonium, and sulfonium polymers for antimicrobial applications: A comparative study. ACS Appl. Polym. Mater. 2024 , 6 , 6966−6975..
Zhou, Z.; Zhou, S.; Zhang, X.; Zeng, S.; Xu, Y.; Nie, W.; Zhou, Y.; Xu, T.; Chen, P. Quaternary ammonium salts: insights into synthesis and new directions in antibacterial applications. Bioconjugate Chem. 2023 , 34 , 302−325..
Li, R.; Qi, Q.; Wang, C.; Hou, G.; Li, C. Self-healing hydrogels fabricated by introducing antibacterial long-chain alkyl quaternary ammonium salt into marine-derived polysaccharides for wound healing. Polymers 2023 , 15 , 1467..
Li, Y.; Ma, X.; Zhang, J.; Pan, X.; Li, N.; Chen, G.; Zhu, J. Degradable selenium-containing polymers for low cytotoxic antibacterial materials. ACS Macro Lett. 2022 , 11 , 1349 −1354..
Li, Y.; Xing, D.; Pan, X.; Zhu, J. Synthesis and antibacterial activity of selenium-functionalized poly( ε -caprolactone). Chinese J. Polym. Sci. 2021 , 40 , 67−74..
Dai, A.; Wang, W.; Heng, X.; Shu, W.; Lu, S.; Xu, Y.; Wang, D.; Pan, X.; Li, N.; Chen, G.; Zhu, J. High-efficiency bactericidal and biofilm elimination ability of the biodegradable alternating sequence main-chain polyselenium salt. ACS Appl. Polym. Mater. 2024 , 6 , 4975−4984..
Chen, S.; Scholiers, V.; Zhang, M.; Zhang, J.; Zhu, J.; Prez, F. E. D.; Pan, X. Thermally responsive selenide-containing materials based on transalkylation of selenonium salts. Angew. Chem. Int. Ed. 2023 , 62 , e202309652..
Qu, D.; Cai, J.; Huang, F.; Zhang, J.; Zuo, H.; Sun, S.; Liu, J.; Bai, Y. High-performance optical pet analysis via non-isothermal crystallization kinetics. Polymers 2022 , 14 , 3044..
Akindoyo, J. O.; Beg, M. D. H.; Ghazali, S.; Islam, M. R.; Jeyaratnam, N.; Yuvaraj, A. R. Polyurethane types, synthesis and applications – a re view. RSC Adv. 2016 , 6 , 114453−114482..
Delebecq, E.; Pascault, J. P.; Boutevin, B.; Ganachaud, F. On the versatility of urethane/urea bonds: reversibility, blocked isocyanate, and non-isocyanate polyurethane. Chem. Rev. 2013 , 113 , 80−118..
Sacligil, I.; Barney, C. W.; Crosby, A. J.; Tew, G. N. Bond strength regime dictates stress relaxation behavior. Soft Matter 2022 , 18 , 4937−4943..
Fadlallah, S.; Van Lijsebetten, F.; Debsharma, T.; Scholiers, V.; Allais, F.; Du Prez, F. E. Exploring the dual dynamic synergy of transesterification and siloxane exchange in vitrimers. Eur. Polym. J. 2024 , 213 , 113117..
Maes, S.; Van Lijsebetten, F.; Winne, J. M.; Du Prez, F. E. N-sulfonyl urethanes to design polyurethane networks with temperature-controlled dynamicity. Macromolecules 2023 , 56 , 1934−1944..
Leibler, L.; Rubinstein, M.; Colby, R. H. Dynamics of reversible networks. Macromolecules 1991 , 24 , 4701−4707..
Hernández, A.; Maiheu, T.; Drockenmuller, E.; Montarnal, D.; Winne, J. M.; Du Prez, F. E. Design and continuous (re)processing of thermally resilient poly(styrene- co -maleic maleate)-based covalent adaptable networks. Chem. Mater. 2024 , 36 , 7487−7503..
Putnam-Neeb, A. A.; Stafford, A.; Babu, S.; Chapman, S. J.; Hemmingsen, C. M.; Islam, M. S.; Roy, A. K.; Kalow, J. A.; Varshney, V.; Nepal, D.; Baldwin, L. A. Oligosiloxane-based epoxy vitrimers: Adaptable thermosetting networks with dual dynamic bonds. ACS Appl. Polym. Mater. 2024 , 6 , 14229−14234..
Porath, L. E.; Ramlawi, N.; Huang, J.; Hossain, M. T.; Derkaloustian, M.; Ewoldt, R. H.; Evans, C. M. Molecular design of multimodal viscoelastic spectra using vitrimers. Chem. Mater. 2024 , 36 , 1966−1974..
Scholiers, V.; Fischer, S. M.; Daelman, B.; Lehner, S.; Gaan, S.; Winne, J. M.; Du Prez, F. E. Tailoring the reprocessability of thiol-ene networks through ring size effects. Angew. Chem. Int. Ed. 2025 , 64 , e202420657..
Shanbhag, S. Pyrespect: A computer program to ext ract discrete and continuous spectra from stress relaxation experiments. Macromol. Theory Simul. 2019 , 28 , 1900005..
Ricarte, R. G.; Tournilhac, F.; Cloître, M.; Leibler, L. Linear viscoelasticity and flow of self-assembled vitrimers: the case of a polyethylene/dioxaborolane system. Macromolecules 2020 , 53 , 1852−1866..
Ricarte, R. G.; Shanbhag, S. A tutorial review of linear rheology for polymer chemists: basics and best practices for covalent adaptable networks. Polym. Chem. 2024 , 15 , 815−846..
Carden, G. P.; Martins, M. L.; Toleutay, G.; Cheng, S.; Blad, B.; Foster, J.; Gainaru, C.; Sokolov, A. P. Critical role of the steric factor in the viscoelasticity of vitrimers. Macromolecules 2025 , 58 , 5494−5504..
Sesia, R.; Cardone, A. G.; Ferraris, S.; Spriano, S.; Sangermano, M. Exploitation of tannic acid as additive for the adhesion enhancement of UV-curable bio-based coating. Prog. Org. Coat. 2024 , 189 , 108311..
[Van Lijsebet ten, F.; Engelen, S.; Bauters, E.; Van Vooren, W.; Smulders, M. M. J.; Du Prez, F. E. Recyclable vitrimer epoxy coatings for durable protection. Eur. Polym. J . 2022, 176 , 111426..
Scholiers, V.; Hendriks, B.; Maes, S.; Debsharma, T.; Winne, J. M.; Du Prez, F. E. Trialkylsulfonium-based reprocessable polyurethane thermosets. Macromolecules 2023 , 56 , 9559−9569..
0
Views
77
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621