

FOLLOWUS
a.Laboratory of Novel Optoelectronic Technology for Ophthalmic Devices (NOTOD), School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
b.National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
c.National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
huangping2020@wmu.edu.cn (P.P.H.)
yongliu@wmu.edu.cn (Y.L.)
lingdankong@wmu.edu.cn (L.D.K.)
Received:25 December 2024,
Revised:27 April 2025,
Accepted:02 May 2025,
Published Online:03 July 2025,
Published:01 August 2025
Scan QR Code
Yuan F.; Lin D.; Zhang Y.; Han K.; Xu Q.; Ma H.; Huang, P. P.; Liu, Y.; Kong, L. D. Nanocomposite from alpha-tocopheryl succinate and chitosan-modified-graphene for efficient inhibition on choroidal melanoma via a chemotherapy-assisted-photothermal therapy. Chinese J. Polym. Sci. 2025, 43, 1387–1394
Feng Yuan, Dan Lin, Yue Zhang, et al. Nanocomposite from Alpha-Tocopheryl Succinate and Chitosan-modified-graphene for Efficient Inhibition on Choroidal Melanoma
Yuan F.; Lin D.; Zhang Y.; Han K.; Xu Q.; Ma H.; Huang, P. P.; Liu, Y.; Kong, L. D. Nanocomposite from alpha-tocopheryl succinate and chitosan-modified-graphene for efficient inhibition on choroidal melanoma via a chemotherapy-assisted-photothermal therapy. Chinese J. Polym. Sci. 2025, 43, 1387–1394 DOI: 10.1007/s10118-025-3371-1.
Feng Yuan, Dan Lin, Yue Zhang, et al. Nanocomposite from Alpha-Tocopheryl Succinate and Chitosan-modified-graphene for Efficient Inhibition on Choroidal Melanoma
A multifunctional nanocomposite is prepared to efficiently inhibit choroidal melanoma (CM) using synergistic chemotherapy-assisted-photothermal therapy (CTH-PTT). This nanocomposite comprises alpha-tocopheryl succinate (
α
-TOS) and carboxylic chitosan-modified graphene (CG) to tackle the pivotal challenge of ocular malignancies such as CM.
High mortality of choroidal melanoma (CM) is mainly attributed to the high likelihood of tumorous recurrence. The essential challenge lies in the presence of residual CM cells survived from the antitumor tr
eatment. These residual tumorous cells are most likely to cause tumorous recurrence. This article reports the preparation of a multifunctional nanocomposite which can be used to treat CM efficiently
via
a chemotherapy-assisted-photothermal therapy (CTH-PTT). The nanocomposite comprises of alpha-tocopheryl succinate (
α
-TOS) and carboxylic chitosan modified graphene (CG).
α
-TOS has been potentially seen as an efficient CTH antitumor drug while its deficiency such as easy being hydrolyzed by gastrointestinal esterase and poor hydrophilicity inevitable limits the clinic application of
α
-TOS. CG is introduced to overcome these shortcomings
offering additional advantages such as the PTT possibility for the antitumor application. The employment of CG-
α
-TOS on ocular CM cells caused more than 80% inhibition rates after irradiation under an 808 nm laser for 10 min. The outcomes of this work provide a facile and advantageous way to resolve the essential issue of the treatment of ocular tumors such as CM.
Soerjomataram, I.; Bray, F. Planning for tomorrow: global cancer incidence and the role of prevention 2020–2070. Nat. Rev. Clin. Oncol. 2021 , 18 , 663−672..
Hulvat, M. C. Cancer incidence and trends. Surg. Clin. 2020 , 100 , 469−481..
You, W.; Henneberg, M. Cancer incidence increasing globally: the role of relaxed natural selection. Evol. Appl. 2018 , 11 , 140−152..
Damato, B. Ocular treatment of choroidal melanoma in relation to the prevention of metastatic death-A personal view. Prog. Retin. Eye Rese. 2018 , 66 , 187−199..
Shan, S. Y.; Jia, S. J.; Lawson, T.; Yan, L.; Lin, M. M.; Liu, Y. The use of TAT peptide-functionalized graphene as a highly nuclear-targeting carrier system for suppression of choroidal melanoma. Int. J. Mol. Sci. 2019 , 20 , 4454..
Roelofs, K. A.; Fabian I. D.; Arora, A. K.; Cohen, V. M. L.; Sagoo, M. S. Long-term outcomes of small pigmented choroidal melanoma treated with primary photodynamic therapy. Ophthalmol. Retina 2021 , 5 , 468−478..
Stålhammar, G.; Herrspiegel, C. Long-term relative survival in uveal melanoma: a systematic review and meta-analysis. Comm. Med. 2022 , 2 , 18..
Mathis, T.; Jardel, P.; Loria, O.; Delaunay, B.; Nguyen, A.; Lanza, F.; Mosci, C.; Caujolle, J. P.; Kodjikian, L.; Thariat, J. New concepts in the diagnosis and management of choroidal metastases. Prog. Retin. Eye Rese. 2019 , 68 , 144−176..
Hamza, H. S.; Elhusseiny, A. M. Choroidal melanoma resec tion. Middle East Afr. J. Op. 2018 , 25 , 65−70..
Jager, M. J.; Shields, C. L.; Cebulla, C. M.; Abdel-Rahman, M. H.; Grossniklaus, H. E.; Stern, M. H.; Carvajal, R. D.; Belfort, R. N.; Jia, R. B.; Shields, J. A.; Damato, B. E. Uveal melanoma. Nat. Rev. Dis. Primers 2020 , 6 , 24..
Kim, J. H.; Shin, S. J.; Heo, S. J.; Choe, E. A.; Kim, C. G.; Jung, M.; Keum, K. C.; Yoon, J. S.; Lee, S. C.; Shin, S. J. Prognoses and clinical outcomes of primary and recurrent uveal melanoma. Cancer Res. Treat. 2018 , 50 , 1238−1251..
Kong, L. D.; Yuan, F.; Huang, P. P.; Yan, L.; Cai, Z. Z.; Lawson, T.; Wu, W. C.; Chou, S. L.; Liu, Y. A metal-polymer hybrid biomimetic system for use in the chemodynamic-enhanced photothermal therapy of cancers. Small 2020 , 16 , 2004161..
Caminal, J. M.; Lorenzo, D.; Gutierrez, C.; Slocker, A.; Piulats J. M.; Cobos E.; Garcia-Bru, P.; Morwani, R.; Santamaria, J. F.; Arias, L. Local resection in choroidal melanoma: a review. J. Clin. Med. 2022 , 11 , 7156..
Bai, H.; B osch, J. J.; Heindl, L. M. Current management of uveal melanoma: a review. Clin. Exp. Ophthalmol. 2023 , 51 , 484−494..
Branisteanu, D. C.; Bogdanici, C. M.; Branisteanu, D. E.; Maranduca, M. A.; Zemba, M.; Balta, F.; Branisteanu, C.; Moraru, A. D. Uveal melanoma diagnosis and current treatment options. Exp. Ther. Med. 2021 , 22 , 1428..
Damato, B.; Hope-Stone, L.; Cooper, B.; Brown, S. L.; Salmon, P.; Heimann, H.; Dunn, L. B. Patient-reported outcomes and quality of life after treatment of choroidal melanoma: a comparison of enucleation versus radiotherapy in 1596 patients. Am. J. Ophthalmol. 2018 , 193 , 230−251..
Maheshwari, A.; Finger, P. T. Laser treatment for choroidal melanoma: current concepts. Surv. Ophthalmol. 2023 , 68 , 211−224..
Gao, C. Z.; Jia, H. R.; Wang, T. Y.; Zhu, X. Y.; Han, X.; Wu, F. G. A dual drug-loaded tumor vasculature-targeting liposome for tumor vasculature disruption and hypoxia-enhanced chemotherapy. Chin. Chem. Lett. 2025 , 36 , 109840..
Banou, L.; Tsani, Z.; Arvanitogiannis, K.; Pavlaki, M.; Dastiridou, A.; Androudi, S. Radiotherapy in uveal melanoma: a review of ocular complications. Curr. Oncol. 2023 , 30 , 6374−6396..
Shields, C. L.; Sioufi, K.; Srinivasan, A.; Nicola, M. D.; Masoomian, B.; Barna, L. E.; Bekerman, V. P.; Say, E. A. T.; Mashayekhi, A.; Emrich, J.; Komarnicky, L.; Shields, J.A. Visual outcome and millimeter incremental risk of metastasis in 1780 patients with small choroidal melanoma managed by plaque radiotherapy. JAMA Ophthalmol. 2018 , 136 , 1325−1333..
Doughty, A. C.; Hoover, A. R.; Layton, E.; Murray, C. K.; Howard, E. W.; Chen, W. R. Nanomaterial applications in photothermal therapy for cancer. Materials 2019 , 12 , 779..
Huang, P. P.; Kong, L. D.; Zhang, F. Y.; Chen, L. X.; Zhang, Y.; Shi, X. Q.; Lawson, T.; Chou, S. L.; Liu, Y.; Wu, W. C. AIBI modified mesoporous copper sulfide nanocomposites for efficient non-oxygen dependent free radicals-assisted photothermal therapy in uveal melanoma. Small 2024 , 20 , 2312211..
Bian, W. Q.; Wang, Y. K.; Pan, Z. X.; Chen, N. P.; Li, X. J.; Wong, W. L.; Liu, X. J.; He, Y.; Zhang, K.; Lu, Y. J. Review of functionalized nanomaterials for photothermal therapy of cancer s. ACS Appl. Nano Mater. 2021 , 4 , 11353−11385..
Cheng, L.; Yang, K.; Chen, Q.; Liu, Z. Organic stealth nanoparticles for highly effective in vivo near-infrared photothermal therapy of cancer. ACS Nano 2012 , 6 , 5605−5613..
Zhi, D. F.; Yang, T.; O'hagan, J.; Zhang, S. B.; Donnelly, R. F. Photothermal therapy. J. Control. Release 2020 , 325 , 52−71..
Hiremath, N.; Kumar, R.; Hwang, K. C.; Banerjee, I.; Thangudu, S.; Vankayala, R. Near-infrared light activatable two-dimensional nanomaterials for theranostic applications: a comprehensive review. ACS Appl. Nano Mater. 2022 , 5 , 1719−1733..
Shanmugam, V.; Selvakumar, S.; Yeh, C. S. Near-infrared light-responsive nanomaterials in cancer therapeutics. Chem. Soc. Rev. 2014 , 43 , 6254−6287..
Wu, C. S.; Wu, Y. H.; Zhu, X. H.; Zhang. J.; Liu, J. L.; Zhang, Y. Near-infrared-responsive functional nanomaterials: the first domino of combined tumor therapy. Nano Today 2021 , 36 , 1009 63..
Deng, X.; Shao, Z.; Zhao, Y. Solutions to the drawbacks of photothermal and photodynamic cancer therapy. Adv. Sci. 2021 , 8 , 2002504..
Kong, L. D.; Huang, P. P.; Yuan, F.; Zhang, Y.; Shi, X. Q.; Han, K.; Liu, K. K.; Xu, Q.; Zhang, W. J.; Lawson, T.; Xia, X. R. Liu, Y.; Jin, Y. P. A metal-free bionic nanozyme for efficient inhibition of cancer recurrence and metastasis following photothermal therapy. Chin. Chem. Lett . 2025 , 111030..
Lin, M. M.; Zou, R. T.; Shi, H. Y.; Yu, S. S.; Li, X. J.; Guo, R.; Yan, L.; Li, G. X.; Liu, Y.; Dai, L. M. Ocular biocompatibility evaluation of hydroxyl-functionalized graphene. Mater. Sci. Eng., C 2015 , 50 , 300−308..
Yan, L.; Lin, M. M.; Zeng, C.; Chen, Z.; Zhang, S.; Zhao, X. M.; Wu, A. G.; Wang, Y. P.; Dai, L. M.; Qu, J.; Guo, M. M.; Liu, Y. Electroactive and biocompatible hydroxyl-functionalized graphene by ball milling. J. Mater. Chem. 2012 , 22 , 8367−8371..
Zheng, Z.; Huang, L. B.; Yan, L.; Yuan, F.; Wang, L. F.; Wang, K.; Lawson, T.; Lin, M. M.; Liu, Y. Polyaniline functionalized graphene nanoelectrodes for the regeneration of PC12 cells via electrical stimulation. Int. J. Mol. Sci. 2019 , 20 , 2013..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621