

FOLLOWUS
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
czzhu@szu.edu.cn (C.Z.Z.)
wangml@szu.edu.cn (M.L.W.)
Received:08 February 2025,
Revised:04 March 2025,
Accepted:09 March 2025,
Published Online:30 April 2025,
Published:01 July 2025
Scan QR Code
Feng, L. K.; Zhang, A. W.; Huang, G. H.; Zhu, C. Z.; Wang, M. L.; Xu, J. Molecular designs of sulfur-containing high refractive index and abbe number polymers using density functional theory. Chinese J. Polym. Sci. 2025, 43, 1253–1268
Lu-Kun Feng, Ai-Wei Zhang, Guo-Hua Huang, et al. Molecular Designs of Sulfur-containing High Refractive Index and Abbe Number Polymers Using Density Functional Theory[J]. Chinese journal of polymer science, 2025, 43(7): 1253-1268.
Feng, L. K.; Zhang, A. W.; Huang, G. H.; Zhu, C. Z.; Wang, M. L.; Xu, J. Molecular designs of sulfur-containing high refractive index and abbe number polymers using density functional theory. Chinese J. Polym. Sci. 2025, 43, 1253–1268 DOI: 10.1007/s10118-025-3334-6.
Lu-Kun Feng, Ai-Wei Zhang, Guo-Hua Huang, et al. Molecular Designs of Sulfur-containing High Refractive Index and Abbe Number Polymers Using Density Functional Theory[J]. Chinese journal of polymer science, 2025, 43(7): 1253-1268. DOI: 10.1007/s10118-025-3334-6.
This study employs Density Functional Theory to design sulfur-containing polymers with high refractive indices and optimized Abbe numbers
enhancing optical performance for advanced applications and providing a predictive framework for next-generation optical materials.
This study explores the molecular design of sulfur-containing polymers with high refractive indices (RI) and optimized Abbe numbers for advanced optical applications. The high molar refraction and low dispersion of sulfur make it an ideal component for enhancing the optical properties of polymers. Density functional theory (DFT) calculations were employed to predict the RI and Abbe numbers for a range of sulfur-based polymers. To improve the accuracy of the theoretical predictions
a correction function was developed by comparing the calculated values with experimental data. The key polymer families investigated included sulfur-containing polycarbonates
heterocyclic optical resins
and cycloolefins
all modified to balance RI enhancement with dispersion control. The results demonstrate that increasing the sulfur content and introducing specific heterocycles and bridged rings can effectively increase the RI while maintaining desirable Abbe numbers. Polymers incorporating 1
4-dithiane and sulfur-bridged rings exhibit excellent optical clarity and minimal visible light absorption
making them suitable for lens and coating applications. The study also calculated the UV-visible spectra for the most promising polymers
confirming their high transparency. This work establishes a predictive framework for developing high-performance optical polymers and offers a systematic approach for balancing the refractive index and dispersion
thereby providing valuable insights for the design of next-generation optical materials.
Liu, J.G.; Ueda, M. High refractive index polymers: fundamental research and practical applications. J. Mater. Chem. 2009 , 19 , 8907−8919..
Higashihara, T.; Ueda, M. Recent progress in high refractive index polymers. Macromolecules 2015 , 48 , 1915−1929..
Afzal, M. A. F.; Cheng, C.; Hachmann, J. Combining first-principles and data modeling for the accurate prediction of the refractive index of organic polymers. J. Chem. Phys. 2018 , 148 , 241712..
Mazumder, K.; Voit, B.; Banerjee, S. Recent progress in sulfur-containing high refractive index polymers for optical applications. ACS Omega 2024 , 9 , 6253−6279..
Zhou, Y.; Zhu, Z.; Zhang, K.; Yang, B. Molecular structure and properties of sulfur-containing high refractive index polymer optical materials. Macromol. Rapid Commun. 2023 , 44 , 2300411..
Boyd, D. A. Sulfur and its role in modern materials science. Angew. Chem. Int. Ed. 2016 , 55 , 15486−15502..
Griebel, J. J.; Glass, R. S.; Char, K.; Pyun, J. Polymerizations with elemental sulfur: a novel route to high sulfur content polymers for sustainability, energy and defense. Prog. Polym. Sci. 2016 , 58 , 90−125..
Kim, D. H.; Jang, W.; Choi, K.; Choi, J. S.; Pyun, J.; Lim, J.; Char, K.; Im, S. G. One-step vapor-phase synthesis of transparent high refractive index sulfur-containing polymers. Sci. Adv. 2020 , 6 , eabb5320..
Tang, Y.; Cabrini, S.; Nie, J.; Pina-Hernandez, C. High-refractive index acrylate polymers for applications in nanoimprint lithography. Chin. Chem. Lett. 2020 , 31 , 256−260..
Cho, W.; Hwang, J.; Lee, S. Y.; Park, J.; Han, N.; Lee, C. H.; Kang, S.-W.; Urbas, A.; Kim, J. O.; Ku, Z.; Wie, J. J. Highly sensitive and cost-effective polymeric-sulfur-based mid-wavelength infrared linear polarizers with tailored Fabry–Pérot resonance. Adv. Mater. 2023 , 35 , 2209377..
Jha, G. S.; Seshadri, G.; Mohan, A.; Khandal, R. K. Sulfur containing optical plastics and its ophthalmic lenses applications. e-Polymers 2008 , 8 , 1−27..
Kleine, T. S.; Glass, R. S.; Lichtenberger, D. L.; Mackay, M. E.; Char, K.; Norwood, R. A.; Pyun, J. 100th anniversary of macromolecular science viewpoint: high refractive index polymers from elemental sulfur for infrared thermal imaging and optics. ACS Macro Lett . 2020, 9 , 245-259..
Mazumder, K.; Komber, H.; Bittrich, E.; Voit, B.; Banerjee, S. Sulfur containing high refractive index poly(arylene thioether)s and poly(arylene ether)s. Macromolecules 2022 , 55 , 1015−1029..
Suzuki, Y.; Higashihara, T.; Ando, S.; Ueda, M. Synthesis of high refractive index poly(thioether sulfone)s with high abbe's number derived from 2,5-is(sulfanylmethyl)-l,4-dithiane. Polym. J. 2009 , 41 , 860−865..
Suzuki, Y.; Higashihara, T.; Ando, S.; Ueda, M. Synthesis and characterization of high refractive index and highabbe’s number poly(thioether sulfone)s based on tricyclo[5.2.1.02,6 ] decane moiety. Macromolecules 2012 , 45 , 3402−3408..
Chen, Y.; Qin, Z.; Tang, G.; Wei, L.; Du, H.; Du, W. Balancing optical property and enhancing stability for high-refractive index polythiourethane with assistance of cubic thiol-functionalized silsesquioxanes. ACS Appl. Polym. Mater. 2021 , 3 , 153−161..
Lopez de Pariza, X.; Fanlo, P.; Polo Fonseca, L.; Ruiz de Luzuriaga, A.; Sardon, H. Polythiourethanes: synthesis, applications, and opportunities. Prog. Polym. Sci. 2023 , 145 , 101735..
Mavila, S.; Sinha, J.; Hu, Y.; Podgórski, M.; Shah, P. K.; Bowman, C. N. High refractive index photopolymers by thiol–yne “click” polymerization. ACS Appl. Mater. Interfaces 2021 , 13 , 15647−15658..
Hong, S. M.; Kim, O. Y.; Hwang, S. H. Chemistry of polythiols and their industrial applications. Materials 2024 , 17 , 1343..
Kaloni, T. P.; Giesbrecht, P. K.; Schreckenbach, G.; Freund, M. S. Polythiophene: from fundamental perspectives to applications. Chem. Mater. 2017 , 29 , 10248−10283..
You, N. H.; Higashihara, T.; Yasuo, S.; Ando, S.; Ueda, M. Synthesis of sulfur-containing poly(thioester)s with high refractive indices and high Abbe numbers. Polym. Chem. 2010 , 1 , 480−484..
Chalker, J. M.; Worthington, M. J. H.; Lundquist, N. A.; Esdaile, L. J. Synthesis and applications of polymers made by inverse vulcanization. Top. Curr. Chem. 2019 , 377 , 16..
Mazumder, K.; Komber, H.; Bittrich, E.; Uhlig, K.; Voit, B.; Banerjee, S. Sulfur-rich polyimides containing bis(3-(trifluoromethyl)phenyl)thiophene for high-refractive-index applications. Macromolecules 2022 , 55 , 9766−9779..
Liu, J. G.; Nakamura, Y.; Suzuki, Y.; Shibasaki, Y.; Ando, S.; Ueda, M. Highly refractive and transparent polyimides derived from 4,4‘-[m-sulfonylbis(phenylenesulfanyl) ] diphthalic anhydride and various sulfur-containing aromatic diamines. Macromolecules 2007 , 40 , 7902−7909..
Liu, J. G.; Nakamura, Y.; Shibasaki, Y.; Ando, S.; Ueda, M. Synthesis and characterization of highly refractive polyimides from 4,4′-thiobis[( p -phenylenesulfanyl)aniline ] and various aromatic tetracarboxylic dianhydrides. J. Polym. Sci. A Polym. Chem. 2007 , 45 , 5606−5617..
Nakabayashi, K.; Sobu, S.; Kosuge, Y.; Mori, H. Synthesis and nanoimprinting of high refractive index and highly transparent polythioethers based on thiol-ene click chemistry. J. Polym. Sci. A Polym. Chem. 2018 , 56 , 2175−2182..
Chen, X.; Fang, L.; Wang, J.; He, F.; Chen, X.; Wang, Y.; Zhou, J.; Tao, Y.; Sun, J.; Fang, Q. Intrinsic high refractive index siloxane –sulfide polymer networks having high thermostability and transmittance via thiol-ene cross-linking reaction. Macromolecules 2018 , 51 , 7567−7573..
Hecht, E. Optics . Pearson Education Inc.: 2017 ..
Park, S. S.; Lee, S.; Bae, J. Y.; Hagelberg, F. Refractive indices of liquid-forming organic compounds by density functional theory. Chem. Phys. Lett. 2011 , 511 , 466−470..
Afzal, M. A. F.; Hachmann, J. Benchmarking DFT approaches for the calculation of polarizability inputs for refractive index predictions in organic polymers. Phys. Chem. Chem. Phys. 2019 , 21 , 4452−4460..
Afzal, M. A. F.; Haghighatlari, M.; Ganesh, S. P.; Cheng, C.; Hachmann, J. Accelerated discovery of high-refractive-index polyimides via first-principles molecular modeling, virtual high-throughput screening, and data mining. J. Phys. Chem. C 2019 , 123 , 14610−14618..
Ando, S. Efficient hybrid functional and basis set functions for DFT calculation of refractive indices and abbe numbers of organic compounds. Chem. Lett. 2018 , 47 , 1494−1497..
Lorentz, H. A. Über die Beziehungzwischen der fortpflanzungsgeschwindigkeit des lichtes der körperdichte. Ann. Phys . 1880, 245 , 641-665..
Lorenz, L. Über die refractionsconstante. Ann. Phys . 1880, 247 , 70-103..
Rice, J. E.; Handy, N. C. The calculation of frequency-dependent polarizabilities as pseudo-energy derivatives. J. Chem. Phys. 1991 , 94 , 4959−4971..
Bondi, A. van der Waals volumes and radii. J. Phys. Chem . 1964, 68 , 441-451..
Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 2005 , 105 , 2999−3094..
Scalmani, G.; Frisch, M. J. Continuous surface charge polarizable continuum models of solvation. I. General formalism. J. Chem. Phys. 2010 , 132 , 114110..
Tang, Z.; Chang, C.; Bao, F.; Tian, L.; Liu, H.; Wang, M.; Zhu, C.; Xu, J. Feasibility of predicting static dielectric constants of polymer materials: a density functional theory method. Polymers 2021 , 13 , 284..
Lin, Y.; Feng, L.; Li, Y.; Chang, C.; Zhu, C.; Wang, M.; Xu, J. Dielectric constant calculation of poly(vinylidene fluoride) based on finite field and density functional theory. Chinese J. Polym. Sci. 2024 , 42 , 655−662..
Ando, S.; Ueda, M. DFT Calculations of Photoabsorption Spectra for Alicyclic and Heterocyclic Compounds in the VUV Region. J. Photopolym. Sci. Technol. 2003 , 16 , 537−544..
Ando, S. DFT calculations on refractive index dispersion of fluoro-compounds in the DUV-UV-Visible region. J. Photopolym. Sci. Technol. 2006 , 19 , 351−360..
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16 Rev. B.01 , Wallingford, CT, 2016.
Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988 , 38 , 3098−3100..
Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988 , 37 , 785−789..
Becke, A. D. Density-functional thermochemistry. III. Th e role of exact exchange. J. Chem. Phys. 1993 , 98 , 5648−5652..
Foresman, J.; Frisch, A. in Exploring chemistry with electronic structure methods. 2 nd ed.; Gaussian Inc.: Pittsburgh, PA, 1996 ..
Kingslake, R.; BarryJohnson, R., The Work of the Lens Designer. In Lens Design Fundamentals , 2nd ed.; Kingslake, R.; Barry Johnson, R., eds. Academic Press: Boston, 2010; pp 1-23.
Matsuda, T.; Funae, Y.; Yoshida, M.; Takaya, T. Novel thiophene methacrylates for materials of high refractive index. J. Macromol. Sci. A 1999 , 36 , 1271−1288..
Okutsu, R.; Ando, S.; Ueda, M. Sulfur-containing poly(meth)acrylates with high refractive indices and high abbe’s numbers. Chem. Mater. 2008 , 20 , 4017−4023..
Kaino, T. Linear optical properties of organic solids. In Organic Molecular Solids: Properties and Applications , 1 st ed.; Jones, W., Ed. CRC Press: Boca Raton, 1997 ; pp 201−241..
Okubo, T.; Kohmoto, S.; Yamamoto, M. Synthesis, characterization, and optical properties of polymers comprising 1,4-dithiane-2,5-bis(thiomethyl) group. J. Appl. Polym. Sci. 1998 , 68 , 1791−1799..
Pan, M. Key monomer of high refractive index surfur-containing optical resin--synthesis, characterization and properties . Thesis, Huazhong University of Science and Technology, 2012 ..
Shen, F.; Wang, K.; Yan, D.; Zhang, Z.; Guan, J.; Zhang, K.; Dai, Z. Progress on sulfur-containing resin optical material with high refractive index. Chem. World 2016 , 57 , 457−464..
Shin, J. H.; Myung, J. H.; Han, H. H.; Shim, J. M. 2019 , Korea Pat., KR101961941B1.
Matsuda, T.; Funae, Y.; Yoshida, M.; Yamamoto, T.; Takaya, T. Optical material of high refractive index resin composed of sulfur-containing aliphatic and alicyclic methacrylates. J. Appl. Polym. Sci. 2000 , 76 , 45−49..
Gao, C. Molecular design of high refractive index optical plastics containing sulfur. Chin. J. Mater. Res . 1999 , 13 , 9−16..
Suri, G.; Jha, G. S.; Seshadri, G.; Khandal, R. K. Modification of low refractive index polycarbonate for high refractive index applications. Int. J. Polym. Sci. 2009 , 2009 , 836819..
Okutsu, R.; Suzuki, Y.; Ando, S.; Ueda, M. Poly(thioether sulfone) with high refractive index and high Abbe’s number. Macromolecules 2008 , 41 , 6165−6168..
Bermeshev, M. V.; Chapala, P. P. Addition polymerization of functionalized norbornenes as a powerful tool for assembling molecular moieties of new polymers with versatile properties. Prog. Polym. Sci. 2018 , 84 , 1−46..
Mol, J. C. Industrial applications of olefin metathesis. J. Mol. Catal. A Chem. 2004 , 213 , 39−45..
0
Views
2
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621