Topological Structure Evolution of Polymer Network Based on Star-shaped Multi-armed Precursors
RESEARCH ARTICLE|Updated:2025-07-15
|
Topological Structure Evolution of Polymer Network Based on Star-shaped Multi-armed Precursors
Chinese Journal of Polymer ScienceVol. 43, Issue 7, Pages: 1240-1252(2025)
Affiliations:
a.School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
b.Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, School of Environment, South China Normal University, Guangzhou 510006, China
c.Information Science School, Guangdong University of Finance and Economics, Guangzhou 510320, China
Li, H.; Xue, Z. J.; Xue, Y. H.; Li, Y. X.; Liu, H. Topological structure evolution of polymer network based on star-shaped multi-armed precursors. Chinese J. Polym. Sci. 2025, 43, 1240–1252
Hui Li, Zi-Jian Xue, Yao-Hong Xue, et al. Topological Structure Evolution of Polymer Network Based on Star-shaped Multi-armed Precursors[J]. Chinese journal of polymer science, 2025, 43(7): 1240-1252.
Li, H.; Xue, Z. J.; Xue, Y. H.; Li, Y. X.; Liu, H. Topological structure evolution of polymer network based on star-shaped multi-armed precursors. Chinese J. Polym. Sci. 2025, 43, 1240–1252 DOI: 10.1007/s10118-025-3324-8.
Hui Li, Zi-Jian Xue, Yao-Hong Xue, et al. Topological Structure Evolution of Polymer Network Based on Star-shaped Multi-armed Precursors[J]. Chinese journal of polymer science, 2025, 43(7): 1240-1252. DOI: 10.1007/s10118-025-3324-8.
Topological Structure Evolution of Polymer Network Based on Star-shaped Multi-armed Precursors
This research focuses on the structure characteristics of polymer networks
including the number
and size dispersity of loops. We note that polydispersity of loop sizes is universal. While the size distribution is primarily related to the functionality of precursors
with fewer precursor arms system exhibiting larger average loop sizes.
Abstract
The performance of polymer network
s
is directly determined by their structure. Understanding the network structure offers insights into optimizing material performance
such as elasticity
toughness
and swelling behavior. Herein
in this study we introduce the Dijkstra algorithm from graph theory to characterize polymer networks based on star-shaped multi-armed precursors by employing coarse-grained molecular dynamics simulations coupled with stochastic reaction model. Our research focuses on the structure characteristics of the generated networks
including the number and size of loops
as well as network dispers
ity characterized by loops. Tracking the number of loops during network generation allows for the identification of the gel point. The size distribution of loops in the network is primarily related to the functionality of the precursors
and the system with fewer precursor arms exhibiting larger average loop sizes. Strain-stress curves indicate that materials with identical functionality and precursor arm lengths generally exhibit superior performance. This method of characterizing network structures helps to refine microscopic structural analysis and contributes to the enhancement and optimization of material properties.
关键词
Keywords
references
Hina, M.; Bashir, S.; Kamran, K.; Ramesh, S.; Ramesh, K. Synthesis and characterization of self-healable poly(acrylamide) hydrogel electrolytes and their application in fabrication of aqueous supercapacitors. Polymer 2020 , 210 , 123020..
Taghipour, Y. D.; Hokmabad, V. R.; Bakhshayesh, D.; Rahmani, A.; Asadi, N.; Salehi, R.;Nasrabadi, H. T. The application of hydrogels based on natural polymers for tissue engineering. Curr. Med. Chem. 2020 , 27 , 2658−2680..
Chen, Y.; Zhang, M.; Sun, Y.; Phuhongsung, P. Improving 3D/4D printing characteristics of natural food gels by novel additives: a review. Food Hydrocoll. 2022 , 123 , 107160..
Yao, P.; Bao, Q.; Yao, Y.; Xiao, M.; Xu, Z.; Yang, J.; Liu, W. Environmentally stable, robust, adhesive, and conductive supramolecular deep eutectic gels as ultrasensitive flexible temperature sensor. Adv. Mater. 2023 , 35 , 2300114..
Yan, A.; Luo, Y.; Tian, H.; Pan, H.; Cao, Y.; Niu, B.; Long, D. Ultrahigh-strength silicone aerogels reinforced by an armor-like epoxy framework via a temperature-controlled sequential reaction strategy. J. Colloid Interface Sci. 2024 , 663 , 665−673..
Zhou, X.; Zhao, X.; Wang, Y.; Wang, P.; Jiang, X.; Song, Z.; Xu, W. Gel-based strain/pressure sensors for underwater sensing: sensing mechanisms, design strategies and applications. Compos. Part B. Eng. 2023 , 255 , 110631..
Zhao, H.; Chen, X.; Yuk, H.; Lin, S.; Liu, X.; Parada, G. Soft materials by design: unconventional polymer networks give extreme properties. Chem. Rev. 2021 , 121 , 4309−4372..
Danielsen, S. P.; Beech, H. K.; Wang, S.; El-Zaatari, B. M.; Wang, X.; Sapir, L.; Rubinstein, M. Molecular characterization of polymer networks. Chem. Rev. 2021 , 121 , 5042−5092..
Xie, D.; Hou, W.; Wang, X.; Fan, W.; Zhang, X.; Wang, D.; Sui, K. Chain folding double-network hydrogels leads to ultra-strong, stretchabl e and tough sensors. Compos. Commun. 2023 , 43 , 101692..
Ghiassinejad, S.; Kumar Sharma, A.; Fustin, C. A.; van Ruymbeke, E. Effect of ring mobility on the dynamics of the slide-ring gels. Chem. Mater. 2024 , 36 , 8311−8322..
Wu, Z.; Zhang, P.; Zhang, H.; Li; X.; He; Y.; Qin, P.; Yang, C. Tough porous nanocomposite hydrogel for water treatment. J. Hazard. Mater. 2022 , 421 , 126754..
Tanpichai, S.; Oksman, K. Cross-linked nanocomposite hydrogels based on cellulose nanocrystals and PVA: mechanical properties and creep recovery. Compos. Part Appl. Sci. Manuf. 2016 , 88 , 226−233..
Gravelle, A. J.; Marangoni, A. G. A new fractal structural-mechanical theory of particle-filled colloidal networks with heterogeneous stress translation. J. Colloid Interface Sci. 2021 , 598 , 56−68..
Sakai, T.; Matsunaga, T.; Yamamoto, Y.; Ito, C.; Yoshida, R.; Suzuki, S.; Chung, U. I. Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers. Macromolecules 2008 , 41 , 5379−5384..
Panyukov, S. Theory of flexible polymer networks: Elasticity and heterogeneities. Polymers 2020 , 12 , 767..
Luo, L.; Zhang, F.; Liu, Y.; Leng, J. Super-tough, self-sensing and shape-programmable polymers via topological structure crosslinking networks. Chem. Eng. J. 2023 , 457 , 141282..
Apostolides, D. E.; Sakai, T.; & Patrickios, C. S. Dynamic covalent star poly(ethylene glycol) model hydrogels: A new platform for mechanically robust, multifunctional materials. Macromolecules 2017 , 50 , 2155−2164..
Okaya, Y.; Jochi, Y.; Seki, T.; Satoh, K.; Kamigaito, M.; Hoshino, T.; Takeoka, Y. Precise synthesis of a homogeneous thermoresponsive polymer network composed of four-branched star polymers with a narrow molecular weight distribution. Macromolecules 2019 , 53 , 374−386..
Doehler, D.; Peterlik, H.; Binder, W. H. A dual crosslinked self-healing system: supramolecular and covalent network formation of four-arm star polymers. Polymer 2015 , 69 , 264−273..
Liu, H.; Mohsin, N.; Kim, S.; Chung, H. Lignin, a biomass crosslinker, in a shape memory polycaprolactone network. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57 , 2121−2130..
Li, Y.; Lu, H.; Zhang, Z. Y.; Liu, H.; Sun, Z. Y. Network formation and mechanical stretching of nanocomposite fabricated by crosslinking reaction of polymer-grafted nanoparticles. Compos. Sci. Technol. 2022 , 227 , 109605..
Bilal, M. H.; Mahmood, N.; Samiullah, M. H.; Busse, K.; Kressler, J. Physico-mechanical properties of poly(ethylene glycol)-based polymer networks. J. Appl. Polym. Sci. 2023 , 140 , e54726..
Samiullah, M. H.; Reichert, D.; Zinkevich, T.; Kressler, J. NMR characterization of PEG networks synthesized by CuAAC using reactive oligomers. Macromolecules 2013 , 46 , 6922−6930..
Sorichetti, V., Ninarello, A., Ruiz-Franco, J. M., Hugouvieux, V., Kob, W., Zaccarelli, E., & amp; Rovigatti, L. Effect of chain polydispersity on the elasticity of disordered polymer networks. Macromolecules 2021 , 54 , 3769−3779..
Furuya, T.; Koga, T. Molecular simulation of networks formed by end-linking of tetra-arm star polymers: Effects of network structures on mechanical properties. Polymer 2020 , 189 , 122195..
Kamata, H.; Akagi, Y.; Kayasuga-Kariya, Y.; Chung, U. I.; Sakai, T. “Nonswellable” hydrogel without mechanical hysteresis. Science 2014 , 343 , 873-875..
Dhamankar, S.; Webb, M. A. Chemically specific coarse-graining of polymers: Methods and prospects. J. Polym. Sci. 2021 , 59 , 2613−2643..
Li, X.; Hirosawa, K.; Sakai, T.; Gilbert, E. P.; Shibayama, M. SANS study on critical polymer clusters of tetra-functional polymers. Macromolecules 2017 , 50 , 3655−3661..
Svaneborg, C.; Everaers, R. Characteristic time and length scales in melts of Kremer–Grest bead–spring polymers with wormlike bending stiffness. Macromolecules 2020 , 53 , 1917−1941..
Liu, H.; Li, M.; Lu, Z. Y.; Zhang, Z. G.; Sun, C. C. Influence of surface-initiated polymerization rate and initiator density on the properties of polymer brushes. Macromolecules 2009 , 42 , 2863−2872..
Groot, R. D.; Warren, P. B. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 1997 , 107 , 4423−4435..
Espanol, P.; Warren, P. Statistical mechanics of dissipative particle dynamics. EPL 1995 , 30 , 191..
Li, Y.; Zhao, W.; Cheng, Z.; Sun, Z. Y.; Liu, H. Structural heterogeneity in tetra-armed gels revealed by computer simulation: evidence from a graph theory assisted characterization. J. Chem. Phys. 2024 , 160 , 144902..
Lang, M.; Michalke, W.; Kreitmeier, S. A statistical model for the length distribution of meshes in a polymer network. J. Chem. Phys. 2001 , 114 , 7627−7632..
Hutchinson, R. A. Modeling of chain length and long-chain branching distributions in free-radical polymerization. Macromol. Theory Simul. 2001 , 10 , 144−157..
Gavrilov, A. A.; Komarov, P. V.; Khalatur, P. G. Thermal properties and topology of epoxy networks: a multiscale simulation methodology. Macromolecules 2015 , 48 , 206−212..
Lang, M.; Kreitmeier, S.; Göritz, D. Trapped entanglements in polymer networks. Rubber Chem. Technol. 2007 , 80 , 873−894..
Deng, Y.; Chen, Y.; Zhang, Y.; Mahadevan, S. Fuzzy Dijkstra algorithm for shortest path problem under uncertain environment. Appl. Soft Comput. 2012 , 12 , 1231−1237..
Cail, J. I.; Stepto, R. F. T. The gel point and network formation–theory and experiment. Polym. Bull. 2007 , 58 , 15−25..
Yasuda, Y.; Morita, H. Structural Analysis of the Linear Elasticity of End-Cross-Linked Star Elastomers with a Number of Trapped Entanglements via Coarse-Grained Molecular Dynamics Simulations. Macromolecules 2024 , 57 , 4804−4816..
Uehara, S.; Wang, Y.; Ootani, Y.; Ozawa, N.; Kubo M. Molecular-level elucidation of a fracture process in slide-ring gels via coarse-grained molecular dynamics simulations. Macromolecules 2022 , 55 , 1946−1956..
POLYMER NETWORKS BY MOLECULAR DYNAMICS SIMULATION: FORMATION, THERMAL, STRUCTURAL AND MECHANICAL PROPERTIES
Dynamic Structural Colors in Helical Superstructures: from Supramolecules to Polymers
Rheological Behaviors of Polymers with Nanoparticles Tethered at Each End
Non-linear Radical Additions-Coupling Polymerization of Monovinyl Monomers towards Polymer Networks: Theory, Tunability and Heritable Architecture
Related Author
Erik Nies
Ting Li
Rong-liang Wu
Yan-Lei Yu
Lang Qin
Bo Ji
Li-Quan Wang
Jia-Ping Lin
Related Institution
Division of Polymer Chemistry and Materials, Department of Chemistry, The Leuven Mathematical Modeling and Computational Science Centre (LMCC) and The Leuven Materials Research Centre (LMRC), Katholieke Universiteit Leuven, Celestijnenlaan 200F,- Heverlee
Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University
Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering Zhejiang University
Current address: Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine