FOLLOWUS
School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
sundexiang@swjtu.edu.cn (D.X.S.)
yongwang1976@swjtu.edu.cn (Y.W.)
Received:16 November 2024,
Revised:20 January 2025,
Accepted:2025-02-20,
Published Online:08 April 2025,
Published:30 April 2025
Scan QR Code
Wang, A. Y.; Zhang, Z. X.; Sun, D. X.; Wang, Y. Synchronously enhancing crystallization ability and mechanical properties of the polylactide film via incorporating stereocomplex crystallite fibers. Chinese J. Polym. Sci. 2025, 43, 793–807
An-Yan Wang, Zhi-Xuan Zhang, De-Xiang Sun, et al. Synchronously Enhancing Crystallization Ability and Mechanical Properties of the Polylactide Film
Wang, A. Y.; Zhang, Z. X.; Sun, D. X.; Wang, Y. Synchronously enhancing crystallization ability and mechanical properties of the polylactide film via incorporating stereocomplex crystallite fibers. Chinese J. Polym. Sci. 2025, 43, 793–807 DOI: 10.1007/s10118-025-3323-9.
An-Yan Wang, Zhi-Xuan Zhang, De-Xiang Sun, et al. Synchronously Enhancing Crystallization Ability and Mechanical Properties of the Polylactide Film
SC crystallite fibers
as nucleating agent and reinforcing agent
will not sacrifice the transparency and degradation of PLLA
which provides a strategy for obtaining transparent PLLA-based composite films with synchronous enhancement of crystallization and mechanical properties.
Poly(L-lactic acid) (PLLA) has been widely concerned because of its excellent biodegradability and biocompatibility. However
the poor crystallization ability of PLLA during the molding process not only leads to weak mechanical properties but also reduces the processing efficiency
which limits the application of PLLA greatly. Enhancing crystallization ability of PLLA
via
introducing inorganic nanoparticles usually sacrifices biodegradability or transparency. Here
the microfine fibers with stereocomplex (SC) crystallites were incorporated into PLLA film to tailor the crystallization ability of PLLA as well as the mechanical properties. The results confirmed that the crystallization ability of PLLA matrix under different circumstances could be greatly enhanced by a few amounts of
SC crystalline fibers
and synchronously enhanced tensile strength and ductility were also achieved
especially at relatively high temperature. Due to the relatively homogeneous dispersion of SC crystalline fibers and the similar refractive index between components
the PLLA-based film also exhibited high transparency
up to 85%-90% depending on the content of SC crystalline fibers. This work provides guidance for manufacturing transparent PLLA-based packaging materials with good crystallization capability and mechanical properties.
Mohan, S.; Panneerselvam, K. A short review on mechanical and barrier properties of polylactic acid-based films. Mater. Today: Proc. 2022 , 56 , 3241−3246..
Yu, J. M.; Xu, S. C.; Liu, B.; Wang, H. L.; Qiao, F. M.; Ren, X. L.; Wei, Q. F. PLA bioplastic production: from monomer to the polymer. Eur. Polym. J. 2023 , 193 , 112076..
Vilarinho, F.; Andrade, M.; Buonocore, G. G.; Stanzione, M.; Vaz, M.; Silva, A. S. Monitoring lipid oxidation in a processed meat product packaged with nanocomposite poly(lactic acid) film. Eur. Polym. J. 2018 , 98 , 362−367..
Gürler, N.; Paşa, S.; Alma, M. H.; Temel, H. The fabrication of bilayer polylactic acid films from cross-linked starch as eco-friendly biodegradable materials: synthesis, characterization, mechanical and physical properties. Eur. Polym. J. 2020 , 127 , 109588..
Hossain, K. M. Z.; Parsons, A. J.; Rudd, C. D.; Ahmed, I.; T hielemans, W. Mechanical, crystallisation and moisture absorption properties of melt drawn polylactic acid fibres. Eur. Polym. J. 2014 , 53 , 270−281..
Liu, G.; Guan, J.; Wang, X.; Yu, J.; Ding, B. Polylactic Acid (PLA) melt-blown nonwovens with superior mechanical properties. ACS Sustain. Chem. Eng. 2023 , 11 , 4279−4288..
Chen, T.; Zhong, G, C.; Zhang, Y. T.; Zhao, L. M.; Qiu, Y. J. Bio-based and biodegradable electrospun fibers composed of poly(L-lactide) and polyamide 4. Chinese J. Polym. Sci. 2020 , 38 , 53−62..
Lu, J.; Yi, L. X.; Zhao, Y. H.; Meng, Y.; Yu, P. X.; Su, J. J.; Han, J. Mechanically robust polylactide fibers with super heat resistance via constructing in situ nanofibrils. Chinese J. Polym. Sci. 2023 , 41 , 962−971..
Zhang, W.; Liu, P.; Yang, G.; Lei, H. Single polylactic acid nanowire for highly sensitive and multifunctional optical biosensing. ACS Appl. Mater. Interfaces 2021 , 13 , 27983−27990..
Zhao, X.; Yu, J. J.; Liang, X. Y.; Huang, Z. P.; Li, J. C .; Peng, S. X. Crystallization behaviors regulations and mechanical performances enhancement approaches of polylactic acid (PLA) biodegradable materials modified by organic nucleating agents. Int. J. Biol. Macromol. 2023 , 233 , 123581..
Li, W. L.; Cao, J. L.; Fu, L.; Liu, F.; Huang, Y.; He, Y.; Jiang, L.; Dan, Y. Effect of stereo-complexation on crystallization behavior and barrier properties of poly-lactide. Int. J. Biol. Macromol. 2024 , 261 , 129834..
Zhou, L.; Xu, P. P.; Ni, S. H.; Xu, L.; Lin, H.; Zhong, G. J.; Huang, H. D.; Li, Z. M. Superior ductile and high-barrier poly(lactic acid) films by constructing oriented nanocrystals as efficient reinforcement of chain entanglement network and promising barrier wall. Chinese J. Polym. Sci. 2022 , 40 , 1201−1212..
Han, D. Q.; Tian, H. H.; Liu, L. T.; Cao, L. Y.; Cao, H. Z.; Yu, X. L. Scalable manufacturing of an amide-based nucleating agent for transparency and high heat resistance of polylactic acid. Int. J. Biol. Macromol. 2024 , 264 , 130574..
Lv, C.; Luo, S. P.; Guo, W. J.; Chang, L. Enhancing interfacial interaction and crystallization in polylactic acid-based biocomposites via synergistic effect of wood fiber and s elf-assembly nucleating agent. Int. J. Biol. Macromol. 2023 , 253 , 127265..
Shi, D. W.; Lai, X. L.; Jiang, Y. P.; Yan, C.; Liu, Z. Y.; Yang, W.; Yang, M. B. Synthesis ofinorganic silica grafted three-arm PLLA and their behaviors for PLA matrix. Chinese J. Polym. Sci. 2019 , 37 , 216−226..
Ortenzi, M. A.; Basilissi, L.; Farina, H.; Silvestro, G. D.; Piergiovanni, L.; MascheronI, E. Evaluation of crystallinity and gas barrier properties of films obtained from PLA nanocomposites synthesized via “ in situ ” polymerization of L-lactide with silane-modified nanosilica and montmorillonite. Eur. Polym. J. 2015 , 66 , 478−491..
Li, H. B.; Peng, Y. B.; Li, Z. H.; Jiang, Z.; Zhang, Q. S.; Wu, L. P. Plasma actuating modified multiwalled carbon nanotubes (MWCNTs) to strengthen interface of MWCNTs/polylactic acid composites by constructing interlaminar stress-transfer bridge. Polym. Test. 2023 , 129 , 108261..
Svyntkivska, M.; Makowski, T.; Shkyliuk, I.; Piorkowska, E. Electrically conductive crystalline polylactide nonwovens obtained by electrospinning and modification with multiwall carbon nanotubes. Int. J. Biol. Macromol. 2023 , 242 , 124730..
Zhou, Y. H.; Lei, L.; Yang, B.; Li, J. B.; Ren, J. Preparation and characterization of polylactic acid (PLA) carbon nanotube nanocomposites. Polym. Test. 2018 , 68 , 34−38..
Huang, S. M.; Hwang, J. J.; Liu, H. J.; Lin, L. H. Crystallization behavior of poly(L-lactic acid)/montmorillonite nanocomposites. J. Appl. Polym. Sci. 2010 , 117 , 434−442..
Guo, J. H.; Qiao, J. X.; Zhang, X. Effect of an alkalized-modified halloysite on PLAcrystallization, morphology, mechanical, and thermal properties of PLA/halloysite nanocomposites. J. Appl. Polym. Sci. 2016 , 133 , 44272..
Zhao, L. F.; Li, Q.; Zhang, R. L.; Tian, X. J.; Liu, L. Effects of functionalized graphenes on the isothermal crystallization of poly(L-lactide) nanocomposites. Chinese J. Polym. Sci. 2016 , 34 , 111−121..
Liew, W. C.; Muhamad, I. I.; Chew, J. W.; Karim, K. J. A. Synergistic effect of graphene oxide/zinc oxide nanocomposites on polylactic acid-based active packaging film:Properties, release kinetics and antimicrobial efficiency. Int. J. Biol. Macromol. 2023 , 253 , 127288..
Li, X. B.; Yu, H.; Ding, J. Y.; Shen, L. L.; Zhao, X. J. Synergistically enhanced toughness and water vapour barrier performance of polylactic acid by graphene oxide/acetylated lignin composite. Mater. Lett. 2022 , 313 , 131829..
Girdthep, S.; Sankong, W.; Pongmalee, A.; Saelee, T.; Punyodom, W.; Meepowpan, P.; Worajittiphon, P. Enhanced crystallization, thermal properties, and hydrolysis resistance of poly(L-lactic acid) and its stereocomplex by incorporation of graphene nanoplatelets. Polym. Test. 2017 , 61 , 229−239..
Zeng, Q. Q.; Wang, Y. F.; Wang, Y. M.; Cao, W.; Liu, C. T.; Shen, C. Y. Polyethylene oxide-assisted dispersion of graphene nanoplatelets in poly(lactic acid) with enhanced mechanical properties and crystallization ability. Polym. Test. 2019 , 78 , 106008..
Gao, Y. Q.; Picot, O. T.; Bilotti, E.; Peijs, T. Influence of filler size on the properties of poly(lactic acid) (PLA)/graphene nanoplatelet (GNP) nanocomposites. Eur. Polym. J. 2017 , 86 , 117−131..
Zeng, Q. Q.; Du, Z. R.; Qin, C. Y.; Wang, Y. M.; Liu, C. T.; Shen, C. Y. Enhanced thermal, mechanical and electromagnetic interference shielding properties of graphene nanoplatelets-reinforced poly(lactic acid)/poly(ethylene oxide) nanocomposites. Mater. Today Commun. 2020 , 25 , 101632..
Zhao, X.; Liu, J. C.; Li, J. C.; Liang, X. Y.; Zhou, W. Y.; Peng, S. X. Strategies and techniques for improving heat resistance and mechanical performances of poly(lactic acid) (PLA) biodegradable materials. Int. J. Biol. Macromol. 2022 , 218 , 115−134..
Zaghloul, M. Y. M.; Zaghloul, M. M. Y.; Zaghloul, M. M. Y. Developments in polyester composite materials – an in-depth review on natural fibres and nano fillers. Compos. Struct. 2021 , 278 , 114698..
Niu, M. J.; Wang, H.; Li, J.; Chen, H. Y.; Li, L.; Yang, H. G.; Liu, X. Y.; Chen, Z. H.; Liu, H. Z.; Chen, J. Z. Polyethylene glycol grafted with carboxylated grapheneoxide as a novel interface modifier for polylactic acid/graphene nanocomposites. R. Soc. Open Sci. 2020 , 7 , 192154..
Nair, S. S.; Chen, H.; Peng, Y.; Huang, Y.; Yan, N. Polylactic acid biocomposites reinforced with nanocellulose fibrils with high l ignin content for improved mechanical, thermal, and barrier properties. ACS Sustain. Chem. Eng. 2018 , 6 , 10058−10068..
Dhar, P.; Bhasney, S. M.; Kumar, A.; Katiyar, V. Acid functionalized cellulose nanocrystals and its effect on mechanical, thermal, crystallization and surfaces properties of poly(lactic acid) bionanocomposites films: a comprehensive study. Polymer 2016 , 101 , 75−92..
Beauson, J.; Schillani, G.; Schueren, L. V.; Goutianos, S. The effect of processing conditions and polymer crystallinity on the mechanical properties of unidirectional self-reinforced PLA composites. Compos. Part A 2022 , 152 , 106668..
Mai, F.; Tu, W.; Bilotti, E.; Peijs, T. Preparation and properties of self-reinforced poly(lactic acid) composites based on oriented tapes. Compos. Part A 2015 , 76 , 145−153..
Ikada, Y.; Jamshidi, K.; Tsuji H.; Hyon, S. H. Stereocomplex formation between enantiomeric poly(lactides). Macromolecules 1987 , 20 , 904−906..
Tsuji, H.; Ikada, Y. Stereocomplex formation between enantiomeric poly(lactic acids). 9. Stereocomplexation from the melt. Macromolecules 1993 , 26 , 6918−6926..
Yan, C.; Hou, D. F.; Zhang, K.; Yang, M. B. Effects of PDLA molecular weight on the crystallization behaviors and rheological properties of asymmetric PDLA/PLLA blends. Polymer 2023 , 270 , 125764..
Gu, T.; Sun, D. X.; Xie, X.; Qi, X. D.; Yang, J. H.; Lei, Y. Z.; Wang, Y. Constructing segregated structure with multiscale stereocomplex crystallites toward synchronously enhancing the thermal conductivity and thermo-mechanical properties of the poly(L-lactic acid) composites. Compos. Sci. Technol. 2022 , 219 , 109257..
Wei, X. F.; Bao, R. Y.; Cao, Z. Q.; Yang, W.; Xie, B. H.; Yang, M. B. Stereocomplex crystallite network in asymmetric PLLA/PDLA blends: formation, structure, and confining effect on the crystallization rate of homocrystallites. Macromolecules 2014 , 47 , 1439−1448..
Cheng, H.; Yu, M.; Zhang, Y.; Shi, H. C.; Yu, Y. C.; Wang, L. J.; Han, C. Y. Enhancement of the properties of biodegradable poly(L-lactide)/poly(butylene carbonate) blends by introducing stereocomplex polylactide crystals. J. Therm. Anal. Calorim. 2024 , 149 , 8041−8057..
Cao, X.; Wang, Y. Q.; Chen, H.; Hu, J. J.; Cui, L. Preparation of different morphologies cellulose nanocrystals from waste cotton fibers and its effect on PLLA/PDLA composites films. Compos. Part B 2021 , 217 , 108934..
Srisuwan, Y.; Baimark, Y. Mechanical properties and heat resistance of stereocomplexpolylactide/copolyester blend films prepared by in situ melt blending followed with compression molding. Heliyon 2018 , 4 , e01082..
Neppalli, R.; Marega, C.; Marigo, A.; Bajgai, M. P.; Kim, H. Y.; Causin, V. Improvement of tensile properties and tuning of the biodegradation behavior of polycaprolactone by addition of electrospun fibers. Polymer 2011 , 52 , 4054−4060..
Zucchelli, A.; Focarete, M. L.; Gualandi, C.; Ramakrishna, S. Electrospun nanofibers for enhancing structural performance of composite materials. Polym. Adv. Technol. 2011 , 22 , 339−349..
Hazarika, D.; Kalita, N. K.; Kumar, A.; Katiyar,V. Crystalline titanium-dioxide nanofinish impregnated on electrospun stereocomplex po ly(lactic acid) as non-woven nanotextile with superhydrophilic, anti-shrinkage, dark dyeing and waste dye removal ability for sustainable application. Int. J. Biol. Macromol. 2022 , 219 , 384−394..
Deng, Y. F.; Zhang, N.; Huang, T.; Lei, Y. Z.; Wang, Y. Constructing tubular/porousstructures toward highly efficient oil/water separation in electrospun stereocomplex polylactide fibers via coaxial electrospinning technology. Appl. Surf. Sci. 2022 , 573 , 151619..
Deng, Y. F.; Zhang, D.; Zhang, N.; Huang, T.; Lei, Y. Z.; Wang, Y. Electrospun stereocomplex polylactide porous fibers toward highly efficient oil/water separation. J. Hazard. Mater. 2021 , 407 , 124787..
Wei, X.; Wei, W.; Cui, Y. H.; Lu, T. J.; Jiang, M.; Zhou, Z. W.; Wang, Y. All-cellulose composites with ultra-high mechanical properties prepared through using straw cellulose fiber. RSC Adv. 2016 , 6 , 93428..
Kurokawa, N.; Hotta, A. Thermomechanical properties of highly transparent self-reinforced polylactide composites with electrospun stereocomplex polylactide nanofibers. Polymer 2018 , 153 , 214−222..
Shao, J.; Xiang, S.; Bian, X. C.; Sun, J. R.; Li, G.; Chen, X. S. Remarkable melting behavior of PLA stereocomplex in linear PLLA/PDLA blends. Ind. Eng. Chem. Res. 2015 , 54 , 2246−2253..
Pan, P. J.; Kai, W. H.; Zhu, B.; Dong, T.; Inoue, Y. Polymorphous crystallization and multiple melting behavior of poly(L-lactide): Molecular weight dependence. Macromolecules 2007 , 40 , 6898−6905..
Chen, W. S.; Zhong, C. N.; Li, S. C.; Wen, D.; Zhou, D. D.; Shao, J.; Chen, S. L.;Hou, H. Q.; Xiang, S. The crystallization behavior of poly(D-Lactic Acid)/poly(L-Lactic Acid) asymmetric blends: Effect of morphology of stereocomplex crystals on the formation of homochiral crystals. J. Polym. Environ. 2024 , 32 , 536−547..
Xu, J. Z; Li, Y.; Li, Y. K.; Chen, Y. W.; Wang, R. Y.; Liu, G.; Liu, S. M.; Ni, H.W.; Li, Z. M. Shear-induced stereocomplex cylindrites in polylactic acid racemic blends: Morphology control and interfacial performance. Polymer 2018 , 140 , 179−187..
Xu, Z. H.; Niu, Y. H.; Yang, L.; Xie, W. Y.; Li, H.; Gan, Z. H.; Wang, Z. G. Morphology, rheology and crystallization behavior of polylactide composites prepared through addition of five-armed star polylactide grafted multiwalled carbon nanotubes. Polymer 2010 , 51 , 730−737..
He, Z. Z.; Yu, X.; Yang, J. H.; Zhang, N.; Huang, T.; Wang, Y.; Zhou, Z. W. Largely enhanced dielectric properties of poly(vinylidene fluoride) composites achieved by adding polypyrrole-decorated graphene oxide. Composites, Part A 2018 , 104 , 89−100..
Chen, J; Sun, D. X.; Gu, T.; Qi, X. D.; Yang, J. H.; Lei, Y. Z.; Wang, Y. Photo-induced shape memory blend composites with remote selective self-healing performance enabled by polypyrrole nanoparticles. Compos. Sci. Technol. 2022 , 217 , 109123..
Xiong, Z. J.; Zhang, X. Q.; Wang, R.; Vos, S.; Wang, R. Y.; Joziasse, C. A. P.; Wang, D. J. Favorable formation of stereocomplex crystals in poly(L-lactide)/poly(D-lactide) blends by selective nucleation. Polymer 2015 , 76 , 98−104..
Zhang, X. X.; Liu, Q.; Yin, J.; Hong, R.; Huang, F. W.; Yang, H. R.; Zhong, G. J.;Liu, D.; Xu, J. Z.; Li Z. M. Promoted formation of α crystals in the polymorph selection of syndiotatic polystyrene under the coupling of pressure, flow, and temperature. Macromolecules 2022 , 55 , 5094−5103..
Xu, H.; Xie, L.; Chen, Y. H.; Huang, H. D.; Xu, J. Z.; Zhong, G. J.; Hsiao, B. S.; Li, Z. M. Strong shear flow-driven simultaneous formation of classic shish-kebab, hybrid shish-kebab, and transcrystallinity in poly(lactic acid)/natural fiber biocomposites. ACS Sustain. Chem. Eng. 2013 , 1 , 1619−1629..
Sun, D. X.; Gu, T.; Mao, Y. T.; Huang, C. H.; Qi, X. D.; Yang, J. H.; Wang, Y. Fabricating high-thermal-conductivity, high-strength, and high-toughness polylactic acid-based blend composites via constructing multioriented microstructures. Biomacromolecules 2022 , 23 , 1789−1802..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution