FOLLOWUS
a.Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
b.Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
c.Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin 300354, China
shuangjiang@tju.edu.cn (S.J.)
libin@tju.edu.cn (B.L.)
Received:18 November 2024,
Revised:28 December 2024,
Accepted:2025-01-10,
Published Online:03 April 2025,
Published:30 April 2025
Scan QR Code
Zhang, T. Y.; Yu, J. N.; Wang, S. S.; Chai, Y. M.; Jiang, S.; An, H. L.; Sun, R. X.; Li, B. Synthesis and properties of heat-resistant polyimides films containing crosslinkable group-tetrafluorostyrene. Chinese J. Polym. Sci. 2025, 43, 863–874
Tian-Yong Zhang, Jia-Ning Yu, Sui-Sui Wang, et al. Synthesis and Properties of Heat-resistant Polyimides Films Containing Crosslinkable Group-tetrafluorostyrene[J]. Chinese journal of polymer science, 2025, 43(5): 863-874.
Zhang, T. Y.; Yu, J. N.; Wang, S. S.; Chai, Y. M.; Jiang, S.; An, H. L.; Sun, R. X.; Li, B. Synthesis and properties of heat-resistant polyimides films containing crosslinkable group-tetrafluorostyrene. Chinese J. Polym. Sci. 2025, 43, 863–874 DOI: 10.1007/s10118-025-3292-z.
Tian-Yong Zhang, Jia-Ning Yu, Sui-Sui Wang, et al. Synthesis and Properties of Heat-resistant Polyimides Films Containing Crosslinkable Group-tetrafluorostyrene[J]. Chinese journal of polymer science, 2025, 43(5): 863-874. DOI: 10.1007/s10118-025-3292-z.
This work synthesized a novel monomer containing crosslinkable group- tetrafluorostyrene
prepared a series of polyimide films further
and improved the heat resistance of PI through thermal crosslinking. The
T
d5%
and
T
g
of the crosslinked PI films increased by about 40 °C compared to before crosslinking.
Polyimide (PI) is widely used in high-tech fields such as microelectronics
aerospace
and national defense because of its excellent optical properties
high- and low-temperature resistance
and good dimensional stability. To achieve the desired properties of PI
the monomers 2
6-diaminopyrimidin-4-ol (DAPD) and 6-(2
3
5
6-tetrafluoro-4-vinylphenoxy) pyrimidin-2
4-diamine (DAFPD)
which contains crosslinkable functional groups
were designed and synthesized successfully and copolymerized with 4
4'-oxydianiline (ODA) and 4
4-hexafluoroisopropylphthalic anhydride (6FDA). The prepared PI film (PI-3)
with rigid backbones and loose packing had excellent heat resistance (
T
d5%
=489 °C) and optical properties (
T
450
=82%). Furthermore
a crosslinked PI film (c-PI-3) with more heat-resistant (
T
d5%
=524 °C) and better mechanical properties (
σ
=125.46 MPa)
can be obtained through thermal crosslinking of tetrafluorostyrene. In addition
the changes in the properties caused by the proportion of DAFP
D added during copolymerization are discussed comprehensively. This study provides a promising candidate for heat-resistant PI materials.
Hsieh, H., Tsai, C., Yang, C., Liu, C., Lin, J., Wu, Y., Fang, C.; Chuang, C. Flexible AMOLEDs with low-temperature-processed TFT backplane technologies. Jnl. Soc. Info. Display 2013 , 21 , 326−332..
Choi, M.; Kim, Y.; Ha, C. Polymers for flexible displays: from material selection to device applications. Prog. Polym. Sci. 2008 , 33 , 581−630..
Dong, H.; Zheng, S.; Guo, T.; Dong, J.; Zhao, X.; Wang, S.; Zhang, Q. Preparation and properties of high heat-resistant polyimide fiber. J. Text. Res. 2022 , 43 , 19−23..
Zhou, H.; Lei, H.; Wang, J.; Qi, S.; Tian, G.; Wu, D. Breaking the mutual restraint between low permittivity and low thermal expansion in polyimide films via a branched crosslink structure. Polymer 2019 , 162 , 116−120..
Mo, T.; Wang, H.; Chen, S.; Dong, R.; Kuo, C.; Yeh, Y. Synthesis and characterization of polyimide-silica nanocomposites using novel fluorine-modified silica nanoparticles. J. Appl. Polym. Sci. 2007 , 104 , 882−890..
Liu, J.; Lee, T.; Wen, C.; Leu, C. High-performance organic-inorganic hybrid plastic substrate for flexible displays and electronics. J. Soc. Inf. Display 2011 , 19 , 63−69..
Fang, Y.; Gan, F.; Dong, J.; Zhao, X.; Li, X.; Zhang, Q. Preparation of high-performance polyimide fibers with wholly rigid structures containing benzobisoxazole moieties. Chinese J. Polym. Sci. 2022 , 40 , 280−289..
Lian, R.; Lei, X.; Xiong, G.; Xiao, Y.; Zhang, Q. Hyperbranched polysiloxane (HBPSi)-based colorless copolyimide films with atomic oxygen (AO) erosion resistance. J. Polym. Sci. 2022 , 60 , 3186−3198..
Qi, Y.; Zhang, S. Recent progress in low-swellable polymer-based smart photonic crystal sensors. Smart Mol. 2023 , 1 , e20230018..
Liu, Y.; Wang, Y.; Wu, D. Synthetic strategies for highly transparent and colorless polyimide film. J. Appl. Polym. Sci. 2022 , 139 , e52604..
Zhang, G.; Fu, X.; Zhou, D.; Hu, R.; Qin, A.; Ben, Z. Smart aggregation-induced emission polymers: Preparation, properties and bio-applications. Smart Mol. 2023 , 1 , e20220008..
Ruan, K.; Shi, X.; Zhang, Y.; Guo, Y. Electric-field-induced alignment of functionalized carbon nanotubes inside thermally conductive liquid crystalline polyimide composite films. Angew. Chem. Int. Ed. 2023 , 62 , e202309010..
Sysel, P.; Holakovsky, R.; Hovorka, S.; Zadny, J. Preparation of optically active polyimides based on 2,2´-diamino-1,1´-binaphthalene. J. Polym. Mater. 2022 , 39 , 325−335..
Zhang, Y.; Ruan, K.; Zhou, K.; Gu, J. Controlled distributed Ti 3 C 2 T x hollo microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 2023 , 35 , 2211642..
Spechler, J.; Koh, T.; Herb, J.; Rand, B.; Arnold, C. A transparent,smooth, thermally robust, conductive polyimide for flexible electronics. Adv. Funct. Mater. 2015 , 25 , 7428−7434..
Liu, Y.; Cao, J.; Wang, Y.; Shen, S.; Liang, W.; Wu, D. Colorless polyamide-imide films with enhanced thermal and dimensional stability and their application in flexible O LED devices. ACS Appl. Polym. Mater. 2022 , 4 , 7664−7673..
Chen, T.; He, X.; Lu, Q. Comprehensive performance of polyimide reinforced by multiple hydrogen bonds for flexible electronics application. ACS Appl. Polym. Mater. 2023 , 5 , 5436−5444..
Hasegawa, M. Development of solution-processable, optically transparent polyimides with ultra-low linear coefficients of thermal expansion. Polymers 2017 , 9 , 520..
Bao, F.; Dong, Z.; Zhang, R.; Qi, F.; Dai, X.; Qiu, X. Preparation and properties of high-performance polyimide copolymer fibers containing rigid pyrimidine and benzoxazole moieties with hydrogen bonding. J. Mater. Res. Technol. 2021 , 12 , 1143−1156..
Bao, F.; Dai, X.; Dong, Z.; Yang, X.; Yao, H.; Li, G.; Qiu, X. Fabrication and properties of polyimide copolymer fibers containing pyrimidine and amide units. J. Mater. Sci. 2020 , 55 , 11763−11778..
Bao, F.; Qi, F.; Lei, H.; Luo, F.; Cai, Y.; Dai, X.; Dong, Z.; Qiu, X. Near-zero thermal expansion and high heat-resistance pol yimide films based on a symmetric and rigid pyrazine structure. ACS Appl. Polym. Mater. 2023 , 5 , 672−679..
Lv, X.; Qiu, S.; Huang, S.; Wang, K.; Li, J.; He, Z.; Zhang, G.; Lu, J.; Sun, R. A strategy to construct low temperature curable copolyimides with pyrimidine-based diamine. Polymer 2022 , 261 , 125418..
Li, D.; Li, D.; Zhao, K.; Gu, Q.; Xu, K.; Chen, C.; Qian, G.; Liu, G. Synthesis of colorless polyimides with high T g and low coefficient of thermal expansion from benzimidazole diamine containing biamide. J. Polym. Sci. 2023 , 61 , 818−828..
Li, D.; Wang, C.; Yan, X.; Ma, S.; Lu, R.; Qian, G.; Zhou, H. Heat-resistant colorless polyimides from benzimidazole diamines: synthesis and properties. Polymer 2022 , 254 , 125078..
Zuo, H.; Chen, Y.; Qian, G.; Yao, F.; Li, H.; Dong, J.; Zhao, X.; Zhang, Q. Effect of simultaneously introduced bulky pendent group and amide unit on optical transparency and dimensional stability of polyimide film. Eur. Polym. J. 2022 , 173 , 111317..
Li, Q.; Park, S.; Ha, C.; Yuan, S.; Shi, L. Synthesis and characterization of an adamantane-based copolyimides with high transparency. High Perform. Polym . 2022 , 34 , 904−913..
Beloborodova, E.; Sazanov, Y.; Gribanov, A.; Mikhailov, G.; Lebedeva, M.; Maricheva, T.; Bobrova, N. Effect of pyrimidine cycles on the thermal stability of polyimides. Vysokomol. Soedin. Ser. A Ser. B 1998 , 40 , 82−86..
Yang, Z.; Kang, C.; Guo, H.; Gao, L. Synthesis and properties of polyimide films for flexible OLED displays. Acta Polymerica Sinica (in Chinese) 2021 , 52 , 1308−1315..
Lin, Z.; Xu, X.; Shi, Y.; Wu, Y. Precision fabrication of polymer nanostructures on recycle DNA template. Smart Mol. 2024 , 2 , e20240006..
Guo, K.; Zhan, J.; Qi, S.; Tian, G.; Wu, D. Preparation and characterization of fluorine-containing benzimidazole polyimide films with a micro-branched crosslink structure. Eur. Polym. J. 2024 , 205 , 112723..
Jeong, K.; Li, Y.; Yoo, D.; Lee, N.; Lee, H.; An do, S.; Ha, C. Effects of crosslinking agents on the physical properties of polyimide/amino-functionalized graphene oxide hybrid films. Polym. Int. 2018 , 67 , 588−597..
Luo, L.; Ye, X.; Yi, J.; Li, K.; Liu, X. Heat resistance and dimensional stability of polyimide improved by inhibiting the dissociation of hydrogen bonds at high temperatures through crosslinking. Acta Polymerica Sinica (in Chinese) 2021 , 52 , 363−370..
Jiang, S.; Bi, Z.; Wang, J.; Zhao, J.; Fan, L.; Tian, L.; Wu, Y.; Yi, N.; Wei, Z.; Gan, F. Construction of novel Cu-α-diimide interactions for enhancing thermal resistance and dimensional stability of polyimide films. J. Mater. Res. Technol. 2023 , 25 , 1920−1930..
Shen, J.; Jiang, P.; Wang, Y.; Zhang, F.; Li, F.; Tu, G. Soluble sulfoxide biphenyl polyimide film with transmittance exceeding 90%. Polymer 2022 , 254 , 125050..
Luo, F.; Lin, C.; Jiao, L.; Du, Z.; Dong, Z.; Dai, X.; Duan, X.; Qiu, X. High glass transition temperature and ultra-low thermal expansion coefficient polyimide films containing rigid pyridine and bisbenzoxazole units. J. Polym. Sci. 2023 , 61 , 1289−1297..
Bao, F.; Lei, H.; Zou, B.; Peng, W.; Qiu, L.; Ye, F.; Song, Y.; Qi, F.; Qiu, X.; Huang, M. Colorless polyimides derived from rigid trifluoromethyl-substituted triphenylene diamines. Polymer 2023 , 273 , 125883..
Qian, G.; Dai, F.; Chen, H.; Wang, M.; Hu, M.; Chen, C.; Yu, Y. Incorporation of N -phenyl in poly(benzimidazole imide)s and improvement in H 2 O-absorbtion and transparency. RSC Adv. 2021 , 11 , 3770−3776..
Huang, B.; Li, K.; Peng, M.; Cheng, J. Polyimide/fluorinated silica composite films with low dielectric constant and low water absorption. High Perform. Polym. 2022 , 34 , 434−443..
Guo, Y.; Qiu, H.; Ruan, K.; Zhang, Y.; Gu, J. Hierarchically multifunctional polyimide composite films with strongly enhanced thermal conductivity. Nano-Micro Lett. 2022 , 14 , 26..
Yan, X.; Dai, F.; Ke, Z.; Yan, K.; Chen, C.; Qian, G.; Li, H. Synthesis of colorless polyimides with high T g from asymmetric twisted benzimidazole diamines. Eur. Polym. J. 2022 , 164 , 110975..
Xu, Y.; Zhang, M.; Pang, Y.; Zheng, T.; Tian, C.; Wang, Z.; Yan, J. Colorless polyimide copolymers derived from isomeric biphenyltetracarboxylic dianhydrides and 2,2′-bis(trifluoromethyl) benzidine. Eur. Polym. J. 2023 , 193 , 112099..
Wang, Y.; Huang, D.; Liu, Y. Is a vitrimer with a high glass transition temperature available? A case study on rigid polyimides cross-linked with dynamic ester bonds. Macromol. Rapid. Commun. 2024 , 11 , 2400312..
Yuasa, M.; Furukawa, N.; Wada, Y.; Kimura, Y. Synthesis and properties of poly(imide-siloxane) with reactive functionalities in siloxane segment. J. Photopolym. Sci. Tec. 2003 , 16 , 227−232..
Zhang, D.; Ma, C.; Shi, P.; Yang, Z.; Rong, T.; Xiong, L.; Liao,W. Controllable preparation of highly crystalline sulfur-doped π-conjugated polyimide hollow nanoshell for enhanced photocatalytic performance. Polymers 2023 , 15 , 903..
Liu, M.; Song, J.; Qin, H.; Qin, S.; Zhang, Y.; Xia, W.; Xiong, C.; Liu, F. Significant enhancement in dielectric properties of polyimide alloys through a two-phase interlo cking structure. Adv. Funct. Mater. 2024 , 34 , 2313258..
Luo, L.; Zhang, J.; Huang, J.; Feng, Y.; Peng, C.; Wang, X.; Liu, X. The dominant factor for mechanical property of polyimide films containing heterocyclic moieties: in-plane orientation, crystallization, or hydrogen bonding. J. Appl. Polym. Sci. 2016 , 133 , 44000..
Nielsen, L. Cross-linking effect on physical properties of polymers. J. Macromol. Sci. 1969 , 3 , 69−103..
Mix, R. Friedrich, J. Neubert, D. Response of linear, branched or crosslinked polyethylene structures on the attack of oxygen plasma. Plasma. Chem. Plasma. Phys. 2014 , 34 , 1199−1218..
Kamalov, A.; Vaganov, G.; Simonova, M.; Kraft, V.; Nesterova, A.; Saprykina, N.; Romasheva, M.; Filippov, A.; Yudin, V. Effect of the molar mass of polyimide based on pyromellitic dianhydride and 4,4′-oxydianiline on dielectric and mechanical properties of nonwoven oriented polyimide materials. Polym. Eng. Sci. 2024 , 64 , 2894−2904..
Han, Y.; Ruan, K.;He, X.; Tang, Y.; G uo, H. Highly thermally conductive aramid nanofiber composite films with synchronous visible/infrared camouflages and information encryption. Angew. Chem. Int. Ed. 2024 , 63 , e202401538..
Dong, H.; Dong, J.; Li, X.; Zhao, X.; Xu, Q.; Zhang, J.; Zhang, Q. Preparation of high-temperature resistant polyimide fibers by introducing the p -phenylenediamine into Kapton-type polyimide. ACS Appl. Polym. Mater. 2024 , 6 , 2371−2380..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution