FOLLOWUS
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
sun_junqi@jlu.edu.cn
Received:21 November 2024,
Revised:31 December 2024,
Accepted:2025-01-07,
Published Online:18 February 2025,
Published:01 March 2025
Scan QR Code
Pan, H. Y.; Fang, X.; Li, Y. X.; Li, S. H.; Li, X.; Sun, J. Q. Mechanically robust and degradable poly(urethane-urea) plastics derived from tannic acid and castor oil for enhanced fruit preservation. Chinese J. Polym. Sci. 2025, 43, 447–456
Hong-Yu Pan, Xu Fang, Yi-Xuan Li, et al. Mechanically Robust and Degradable Poly(urethane-urea) Plastics Derived from Tannic Acid and Castor Oil for Enhanced Fruit Preservation[J]. Chinese journal of polymer science, 2025, 43(3): 447-456.
Pan, H. Y.; Fang, X.; Li, Y. X.; Li, S. H.; Li, X.; Sun, J. Q. Mechanically robust and degradable poly(urethane-urea) plastics derived from tannic acid and castor oil for enhanced fruit preservation. Chinese J. Polym. Sci. 2025, 43, 447–456 DOI: 10.1007/s10118-025-3290-1.
Hong-Yu Pan, Xu Fang, Yi-Xuan Li, et al. Mechanically Robust and Degradable Poly(urethane-urea) Plastics Derived from Tannic Acid and Castor Oil for Enhanced Fruit Preservation[J]. Chinese journal of polymer science, 2025, 43(3): 447-456. DOI: 10.1007/s10118-025-3290-1.
Mechanically robust and degradable poly(urethane-urea) plastics for food packaging are fabricated by cross-linking tannic acid (TA) and castor oil. High content of antioxidant TA endows these bio-based plastics enhanced freshness preservation
significantly extending the shelf life of fruits. Meanwhile
these plastics can autonomously degrade into non-toxic species in soil.
Traditional packaging plastics derived from fossil fuels for perishable foods have caused severe environmental pollution and resource depletion. To promote sustainable development and reduce wastage of perishable products
there is a significant challenge in developing bio-based packaging plastics that offer excellent preservation
satisfactory mechanical performance
and inherent degradability. In this study
poly(urethane-urea) (PUU) plastics are fabricated using a one-pot p
olyaddition reaction involving castor oil (CO)
tannic acid (TA)
lysine-derived ethyl 2
6-diisocyanatohexanoate (LDI)
and H
2
O. The resulting PUU plastics demonstrate a high breaking strength of about 32.7 MPa and a strain at break of
ca.
102%. Due to the reversibility of hydrogen bonds
PUU plastics can be easily shaped into various forms. They are non-cytotoxic and suitable for food packaging. With a high TA content of
ca.
38.2 wt%
PUU plastics exhibit excellent antioxidant capacity. Consequently
PUU plastics show outstanding freshness preservation performance
extending the shelf life of cherry tomatoes and winter jujubes for at least 8 days at room temperature. Importantly
PUU plastics can autonomously degrade into non-toxic substances within
ca.
298 days when buried in soil.
Gibb, B. C. Plastics are forever. Nat. Chem. 2019 , 11 , 394−395..
Geyer, R.; Jambeck, J. R.; Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017 , 3 , e1700782..
An, N.; Zhu, Y.; Wang, X.; Li, Y.; Liu, J.; Fang, X.; Lu, Z.; Yang, B.; Sun, J. Dual nanofillers-reinforced noncovalently cross-linked polymeric composites with unprecedented mechanical strength. CCS Chem. 2023 , 5 , 2312−2323..
Guan, T.; Wang, X.; Zhao, X.; Lu, X.; Wang, X. L.; Wang, Y.-Z.; Sun, J. Reversibly cross-linking polyimide and cyclophosphazene toward closed-loop recyclable plastics with high mechanical strength, excellent flame retardancy, and chemical resistance. CCS Chem. 2024 , 6 , 976−987..
Zhou, X. W.; Huang, J.; Zhang, X. H.; Li, T.; Wang, Y.; Wang, S. B.; Xia, B. H.; Dong, W. F. Design of tough, yet strong, heat-resistant PLA/PBAT blends with reconfigurable shape memory behavior by engineering exchangeable covalent crosslinks. Chinese J. Polym. Sci. 2023 , 41 , 1868−1878..
Wang, B. B.; Huang, R.; Wang, X.; Jiang, T.; Wang, Y.; Du, S.; Li, F. L.; Zhu, J.; Ma, S. Q. Upcycling of poly(butylene adipate- co -terephthalate) into dual covalent adaptable networks through chain breaking-crosslinking strategy. Chinese J. Polym. Sci. 2024 , 42 , 1505−1513..
Tardy, B. L.; Richardson, J. J.; Greca, L. G.; Guo, J.; Bras, J.; Rojas, O. J. Advancing bio-based materials for sustainable solutions to food packaging. Nat. Sustain. 2022 , 6 , 360−367..
Tournier, V.; Duquesne, S.; Guillamot, F.; Cramail, H.; Taton, D.; Marty, A.; André, I. Enzymes’ power for plastics degradation. Chem. Rev. 2023 , 123 , 5612−5701..
Shlush, E.; Davidovich-Pinhas, M. Bioplastics for food packaging. Trends Food Sci. Technol. 2022 , 125 , 66−80..
Guan, Q. F.; Yang, H. B.; Zhao, Y. X.; Han, Z. M.; Ling, Z. C.; Yang, K. P.; Yin, C. H.; Yu, S. H. Microplastics release from victuals packaging materials during daily usage. EcoMat 2021 , 3 , 12107..
Merino, D.; Quilez-Molina, A. I.; Perotto, G.; Bassani, A.; Spigno, G.; Athanassiou, A. A second life for fruit and vegetable waste: a review on bioplastic films and coatings for potential food protection applications. Green Chem. 2022 , 24 , 4703−4727..
Jung, S.; Cui, Y.; Barnes, M.; Satam, C.; Zhang, S.; Chowdhury, R. A.; Adumbumkulath, A.; Sahin, O.; Miller, C.; Sajadi, S. M.; et al. Multifunctional bio-nanocomposite coatings for perishable fruits. Adv. Mater. 2020 , 32 , 1908291..
Liu, F.; Kuai, L.; Lin, C.; Chen, M.; Chen, X.; Zhong, F.; Wang, T. Respiration-triggered release of cinnamaldehyde from a biomolecular Schiff base composite for preservation of perishable food. Adv. Sci. 2023 , 11 , 2306056..
Zhou, Z.; Ma, J.; Li, K.; Zhang, W.; Li, K.; Tu, X.; Liu, L.; Xu, J.; Zhang, H. A plant leaf-mimetic membrane with controllable gas permeation for efficient preservation of perishable roducts. ACS Nano 2021 , 15 , 8742−8752..
Haider, T. P.; Völker, C.; Kramm, J.; Landfester, K.; Wurm, F. R. Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angew. Chem. Int. Ed. 2018 , 58 , 50−62..
Jia, X.; Qin, C.; Friedberger, T.; Guan, Z.; Huang, Z. Efficient and selective degradation of poly ethylenes into liquid fuels and waxes under mild conditions. Sci. Adv. 2016 , 2 , e1501591..
Li, S.; Liu, X.; Zhang, X.; Fan, L.; Wang, F.; Zhou, J.; Zhang, H. Preparation and characterization of zein-tannic acid nanoparticles/chitosan composite films and application in the preservation of sugar oranges. Food Chem . 2024 , 437 , 137673..
Surendren, A.; Mohanty, A. K.; Liu, Q.; Misra, M. A review of biodegradable thermoplastic starches, their blends and composites: recent developments and opportunities for single-use plastic packaging alternatives. Green Chem. 2022 , 24 , 8606−8636..
Guo, L.; Qiang, T.; Ma, Y.; Ren, L.; Zhu, C. Biodegradable anti-ultraviolet film from modified gallic acid cross-linked gelatin. ACS Sustain. Chem. Eng. 2021 , 9 , 8393−8401..
Sadeghi, K.; Seo, J. Photografting coating: an innovative approach to “non-migratory” active packaging. Adv. Funct. Mater. 2021 , 31 , 2010759..
Li, W.; Cheng, S. J.; Li, Y. G.; Khan, M. A.; Chen, M. Ring-opening metathesis poly merization to access degradable imine-based polymers. Chinese J. Polym. Sci . 2024 , DOI: 10.1007/s10118-024-3220-7..
Ma, J.; Zeng, F.; Lin, X.; Wang, Y.; Ma, Y.; Jia, X.; Zhang, J.; Liu, B.; Wang, Y.; Zhao, H. A photoluminescent hydrogen-bonded biomass aerogel forsustainable radiative cooling. Science 2024 , 385 , 68−74..
Zheng, Y.; Jia, X.; Zhao, Z.; Ran, Y.; Du, M.; Ji, H.; Pan, Y.; Li, Z.; Ma,X.; Liu, Y.; Duan, L.; Li, X. Innovative natural antimicrobial natamycinincorporated titanium dioxide (nano-TiO 2 )/poly(butyleneadipate- co -terephthalate) (PBAT)/poly(lactic acid) (PLA) biodegradable active film (NTP@PLA) and application in grapepreservation. Food Chem . 2023 , 400 , 134100..
Trajkovska Petkoska, A.; Daniloski, D.; D'Cunha, N. M.; Naumovski, N.; Broach, A. T. Edible packaging: sustainable solutions and novel trends in food packaging. Food Res. Int. 2021 , 140 , 109981..
Kurek, M.; Hlupić, L.; Elez Garofulić, I.; Descours, E.; Ščetar, M.; Galić, K. Comparison of protective supports and antioxidative capacity of two bio-based films with revalorised fruit pomaces extracted from blueberry and red grape skin. Food Packaging Shelf Life 2019 , 20 , 100315..
Brito, J.; Hlushko, H.; Abbott, A.; Aliakseyeu, A.; Hlushko, R.; Sukhishvili, S. A. Integrating antioxidant functionality into polymer materials: fundamentals, strategies, and applications. ACS Appl. Mater. Interfaces 2021 , 13 , 41372−41395..
Su, L. J.; Zhang, J. H.; Gomez, H.; Murugan, R.; Hong, X.; Xu, D.; Jiang, F.; Peng, Z. Y. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxidative Med. Cell. Longev. 2019 , 2019 , 1−13..
Jiang, H.; Wang, F.; Ma, R.; Tian, Y. Advances in gum Arabic utilization for sustainable applications as food packaging: reinforcement strategies and applications in food preservation. Trends Food Sci. Technol. 2023 , 142 , 104215..
Park, J. J.; Choi, Y. H.; Sim, E. J.; Lee, E.; Yoon, K. C.; Park, W. H. Biodegradable poly(3-hydroxybutyrate- co -4-hydroxybutyrate) films coated with tannic acid as an active food packaging material. Food Packaging Shelf Life 2023 , 35 , 101009..
Gaikwad, A.; Hlushko, H.; Karimin eghlani, P.; Selin, V.; Sukhishvili, S. A. Hydrogen-bonded, mechanically strong nanofibers with tunable antioxidant activity. ACS Appl. Mater. Interfaces 2020 , 12 , 11026−11035..
Villaño, D.; Fernández-Pachón, M. S.; Moyá, M. L.; Troncoso, A. M.; García-Parrilla, M. C. Radical scavenging ability of polyphenolic compounds towards DPPH free radical. Talanta 2007 , 71 , 230−235..
Gogoi, S.; Karak, N. Biobased biodegradable waterborne hyperbranched polyurethane as an ecofriendly sustainable material. ACS Sustain. Chem. Eng. 2014 , 2 , 2730−2738..
He, M.; Pan, J.; Hong, M.; Shen, Y.; Zhang, H.; Jiang, Y.; Gong, L. Fabrication of antimicrobial packaging based on polyaminopropyl biguanide incorporated pectin/polyvinyl alcohol films for fruit preservation. Food Chem . 2024 , 457 ..
Zhang, C.; Liang, H.; Liang, D.; Lin, Z.; Chen, Q.; Feng, P.; Wang, Q. Renewable castor-oil-based waterborne polyurethane networks: simultaneously showing high strength, self-healing, processability and tunable multishape memory. Angew. Chem. Int. Ed. 2020 , 60 , 4289−4299..
Chakraborty, I.; Chatterjee, K. Polymers and composites derived from castor oil as sustainable materials and degradable biomaterials: current status and emerging trends. Biomacromolecules 2020 , 21 , 4639−4662..
Brand-Williams, W.; Cuvelier, M. E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995 , 28 , 25−30..
Catrouillet, S.; Bouteiller, L.; Nicol, E.; Nicolai, T.; Pensec, S.; Jacquette, B.; Le Bohec, M.; Colombani, O. Self-assembly and critical solubility temperature of supramolecular polystyrene bottle-brushes in cyclohexane. Macromolecules 2015 , 48 , 1364−1370..
Wang, Y.; Huang, X.; Zhang, X. Ultrarobust, tough and highly stretchable self-healing materials based on cartilage-inspired noncovalent assembly nanostructure. Nat. Commun. 2021 , 12 , 1291..
Guo, Z.; Lu, X.; Wang, X.; Li, X.; Li, J.; Sun, J. Engineering of chain rigidity and hydrogen bond cross-linking toward ultra-strong, healable, recyclable, and water-resistant elastomers. Adv. Mater. 2023 , 35 , 2300286..
Fang, X.; Tian, N.; Gao, X.; Wang, H.; Wang, R.; Li, T.; Li, Y.; Sun, J. Reversibly cross-linked liquid-free ionic conductive elastomers for closed-loop recyclable temperature sensors with ultra-high sensitivity. CCS Chem . 2024 , DOI: 10.31635/ccschem.31024.202404819..
Westerman, C. R.; McGill, B. C.; Wilker, J. J. Sustainably sourced components to generate high-strength adhesives. Nature 2023 , 621 , 306−311..
Fang, X.; Tian, N.; Hu, W.; Qing, Y.; Wang, H.; Gao, X.; Qin, Y.; Sun, J. Dynamically cross-linking soybean oil and low-molecular-weight polylactic acid toward mechanically robust, degradable, and recyclable supramolecular plastics. Adv. Funct. Mater. 2022 , 32 , 2208623..
Sun, H.; Fang, X.; Zhu, Y.; Yu, Z.; Lu, X.; Sun, J. Highly tough, degradable, and water-resistant bio-based supramolecular plastics comprised of cellulose and tannic acid. J. Mater. Chem. A 2023 , 11 , 7193−7200..
Wang, P.; Liu, W. C.; Han, C.; Wang, S.; Bai, M. Y.; Song, C. P. Reactive oxygen species: multidimensional regulators of plant adaptation to abiotic s tress and development. J. Integr. Plant Biol. 2024 , 66 , 330−367..
Menzel, C.; González-Martínez, C.; Chiralt, A.; Vilaplana, F. Antioxidant starch films containing sunflower hull extracts. Carbohydr. Polym. 2019 , 214 , 142−151..
Tedeschi, A. M.; Di Caprio, F.; Piozzi, A.; Pagnanelli, F.; Francolini, I. Sustainable bioactive packaging based on thermoplastic starch and microalgae. Int. J. Mol. Sci. 2021 , 23 , 178..
Yao, X.; Qin, Y.; Zhang, M.; Zhang, J.; Qian, C.; Liu, J. Development of active and smart packaging films based on starch, polyvinyl alcohol and betacyanins from different plant sources. Int. J. Biol. Macromol. 2021 , 183 , 358−368..
Collazo-Bigliardi, S.; Ortega-Toro, R.; Chiralt, A. Improving properties of thermoplastic starch films by incorporating active extracts and cellulose fibres isolated from rice or coffee husk. Food Packaging Shelf Life 2019 , 22 , 100383..
Menzel, C. Improvement of starch films for food packaging through a three-principle approach: antio xidants, cross-linking and reinforcement. Carbohydr. Polym. 2020 , 250 , 116828..
Yi, J.; Li, Y.; Zhao, Y.; Xu, Z.; Wu, Y.; Jiang, M.; Zhou, G. Development of a series of biobased poly(ethylene 2,5-furandicarboxylate- co -(5,5′-((phenethylazanediyl)bis(methylene))bis(furan-5,2-diyl))dimethylene 2,5-furandicarboxylate) copolymers via a sustainable and mild route: promising “breathing” food packaging materials. Green Chem. 2022 , 24 , 5181−5190..
Aguilar-Zárate, P.; Cruz, M. A.; Montañez, J.; Rodríguez-Herrera, R.; Wong-Paz, J. E.; Belmares, R. E.; Aguilar, C. N. Gallic acid production under anaerobic submerged fermentation by two bacilli strains. Microb. Cell Fact. 2015 , 14 , 209..
Mingshu, L.; Kai, Y.; Qiang, H.; Dongying, J. Biodegradation of gallotannins and ellagitannins. J. Basic Microbiol. 2006 , 46 , 68−84..
Sahoo, S.; Kalita, H.; Mohanty, S.; Nayak, S. K. Degradation study of biobased polyester–polyurethane and its nanocomposite under natural soil burial, UV radiation and hydrolytic-salt water circumstances. J. Polym. Environ. 2017 , 26 , 1528−1539..
Cregut, M.; Bedas, M.; Durand, M. J.; Thouand, G. New insights into polyurethane biodegradation and realistic prospects for the development of a sustainable waste recycling process. Biotechnol. Adv. 2013 , 31 , 1634−1647..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution