FOLLOWUS
College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
zengheliu@hznu.edu.cn (Z.H.L.)
ytzhu@hznu.edu.cn (Y.T.Z.)
Received:16 December 2024,
Revised:06 January 2025,
Accepted:2025-01-07,
Published Online:18 February 2025,
Published:01 March 2025
Scan QR Code
Zhang, J. Y.; Xu, X. Y.; Sun, Q.; Liu, L.; Liu, Z. H.; Zhu, Y. T. In situ self-growing of thermoplastics into strong and tough thermosets based on dynamic imidazole-urea moiety. Chinese J. Polym. Sci. 2025, 43, 488–494
Jian-Ye Zhang, Xin-Yu Xu, Qiao Sun, et al.
Zhang, J. Y.; Xu, X. Y.; Sun, Q.; Liu, L.; Liu, Z. H.; Zhu, Y. T. In situ self-growing of thermoplastics into strong and tough thermosets based on dynamic imidazole-urea moiety. Chinese J. Polym. Sci. 2025, 43, 488–494 DOI: 10.1007/s10118-025-3289-7.
Jian-Ye Zhang, Xin-Yu Xu, Qiao Sun, et al.
Thermosets possess excellent mechanical properties
but are unable to be melt-processed like thermoplastics
which greatly limits their shape designs and applications. Herein
a self-growing strategy based on dynamic imidazole-urea moiety for melt-processing strong and tough thermosets is present.
Thermosets are indispensable to our daily life
but their crosslinked structures make them unable to be processed by the melt processing like thermoplastics
which greatly limits their shape designs and applications. Herei
n
we address this challenge
via
an
in situ
self-growing strategy
i.e.
utilizing the dynamic imidazole-urea moiety to suck up and integrate epoxy into the materials and making the thermoplastics grow
in situ
into thermosets. With this strategy
thermosets can be readily processed
via
hot-melt extrusion molding
including melt spinning and fused deposition modeling 3D printing. More importantly
this strategy simultaneously integrates the flexibility of polyurethane and the robustness of epoxy resin into the resulting thermosets
yielding a mechanical-reinforcing effect to make the material not only strong but also tough (toughness: 99.3 MJ∙m
−3
tensile strength: 38.8 MPa). Moreover
the crosslinking density and modulus of the as-prepared thermosets (from 34.1 MPa to 613.7 MPa) can be readily tuned on demand by changing the growth index. Furthermore
these thermosets exhibited excellent thermal stability and chemical resistance.
Robertson, I.; Yourdkhani, M.; Centellas, P.; Aw, J.; Ivanoff, D.; Goli, E.; Lloyd, E.; Dean, L.; Sottos, N.; Geubelle, P.; Moore, J.; White, S. Rapid energy-efficient manufacturing of polymers and composites via frontal polymerization. Nature 2018 , 557 , 223−227..
Röttger, M.; Domenech, T.; van der Weegen, R.; Nicolaÿ, A.; Leibler, L. High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis. Science 2017 , 356 , 62−65..
Lei, D.; Yang, Y.; Liu, Z.; Chen, S.; Song, B.; Shen, A.; Yang, B.; Li, S.; Yuan, Z.; Qi, Q.; Sun, L.; Guo, Y.; Zuo, H.; Huang, S.; Yang, Q.; Mo, X.; He, C.; Zhu, B.; Jeffries, E.; Qing, F.; Ye, X.; Zhao, Q.; You, Z. A general strategy of 3D printing thermosets for diverse applications. Mater. Horiz. 2019 , 6 , 394−404..
Luo, K.; Wang, L.; Wang, M.; Du, R.; Tang, L.; Yang, K.; Wang, Y. 4D printing of biocompatible scaffolds via in situ photo-crosslinking from shape memory copolyesters. ACS Appl. Mater. Interfaces 2023 , 15 , 44373−44383..
Cheng, C.; Xie, H.; Xu, Z.; Li, L.; Jiang, M.; Tang, L.; Yang, K.; Wang, Y. 4D printing of shape memory aliphatic copolyester via UV-assisted FDM strategy for medical protective devices. Chem. Eng. J . 2020 , 396 , 125242..
Ming, Y.; Xin, Z.; Zhang, J.; Duan, Y.; Wang, B. Fabrication of continuous glass fiber-reinforced dual-cure epoxy composites via UV-assisted fused deposition modeling. Compos. Commun. 2020 , 21 , 100401..
Kianfar, P.; Trieu, H.; Vacche, S.; Tsantilis, L.; Bongiovanni, R.; Vitale, A. Solvent-free electrospinning of liquid polybutadienes and their in situ photocuring. Eur. Polym. J. 2022 , 177 , 111453..
Compton, B.; Lewis, J. 3D-printing of lightweight cellular composites. Adv. Mater . 2014 , 26 , 5930−5935..
Chen, Q.; Han, L.; Ren, J.; Rong, L.; Cao, P.; Advincula, R. 4D printing via an unconventional fused deposition modeling route to high-performance thermosets. ACS Appl. Mater. Interfaces 2020 , 12 , 50052−50060..
Katcharava, Z.; Zhou, X.; Bhandary, R.; Sattler, R.; Huth, H.; Beiner, M.; Marinow, A.; Binder, W. Solvent and catalyst free vitrimeric poly(ionic liquid) electrolytes. RSC Adv. 2023 , 13 , 14435−14442..
Kar, G.; Lin, X.; Terentjev, E. Fused filament fabrication of a dynamically crosslinked network derived from commodity thermoplastics. ACS Appl. Polym. Mater. 2022 , 4 , 4364−4372..
Saed, M.; Lin, X.; Terentjev, E. Dynamic semicrystalline networks of polypropylene with thiol-anhydride exchangeable crosslinks. ACS Appl. Mater. Interfaces 2021 , 13 , 42055−42062..
Niu, W.; Zhang, Z.; Chen, Q.; Cao, P.; Advincula, R. Highly recyclable, mechanically isotropic and healable 3D-printed elastomers via polyurea vitrimers. ACS Mater. Lett. 2021 , 3 , 1095−1103..
Joe, J.; Shin, J.; Choi, Y.; Hwang, J.; Kim, S.; Han, J.; Park, B.; Lee, W.; Park, S.; Kim, Y.; Kim, D. A 4D printable shape memory vitrimer with repairability and recyclability through network architecture tailoring from commercial poly( ε -caprolactone). Adv. Sci. 2021 , 8 , 2103682..
Shi, Q.; Yu, K.; Kuang, X.; Mu, X.; Dunn, C.; Dunn, M.; Wang, T.; Qi, H. Recyclable 3D printing of vitrime r epoxy. Mater. Horiz. 2017 , 4 , 598−607..
Xiong, X.; Wang, S.; Xue, L.; Wang, H.; Cui, J. Growing strategy for postmodifying cross-linked polymers' bulky size, shape, and mechanical properties. ACS Appl. Mater. Interfaces 2022 , 14 , 8473−8481..
Chen, D.; Ni, C.; Xie, L.; Li, Y.; Deng, S.; Zhao, Q.; Xie, T. Homeostatic growth of dynamic covalent polymer network toward ultrafast direct soft lithography. Sci. Adv. 2021 , 7 , eabi7360..
Fang, Y.; Xue, J.; Wang, H.; Yang, L.; Dong, S.; Cui, J. Damage restoration in rigid materials via a keloid-inspired growth process. J. Mater. Chem. A 2021 , 10 , 174−179..
Xu, X.; Fang, Z.; Jin, B.; Mu, H.; Shi, Y.; Xu, Y.; Chen, G.; Zhao, Q.; Zheng, N.; Xie, T. Regenerative living 4D printing via reversible growth of polymer networks. Adv. Mater. 2023 , 35 , 2209824..
Wang, H.; Xiong, X.; Yang, L.; Fang, Y.; Xue, J.; Cui, J. Alternating growth for in situ post-programing hydrogels' sizes and performan ce. Adv. Funct. Mater. 2023 , 33 , 2212402..
Jian, N.; Guo, R.; Zuo, L.; Sun, Y.; Xue, Y.; Liu, J.; Zhang, K. Bioinspired self-growing hydrogels by harnessing interfacial polymerization. Adv. Mater. 2023 , 35 , 2210609..
Xue, J.; Yin, X.; Xue, L.; Zhang, C.; Dong, S.; Yang, L.; Fang, Y.; Li, Y.; Li, L.; Cui, J. Self-growing photonic composites with programmable colors and mechanical properties. Nat. Commun. 2022 , 13 , 7823..
Yang, L.; Liu, Z.; Neisiany, R.; Lou, J.; Guo, Y.; Zhang, L.; Liu, H.; Chen, S.; Gu, S.; You, Z. A topological polymer network with Cu(II)-coordinated reversible imidazole-urea locked unit constructs an ultra-strong self-healing elastomer. Sci. China Chem. 2023 , 66 , 853−862..
Choi, M.; Kim, M.; Jung, K.; Lee, T.; Ha, M.; Hyung, W.; Jung, H.; Noh, S. Reactivity and curing efficiency of isocyanate cross-linkers with imidazole-based blocking agents for low-temperature curing of automotive clearcoats. Coatings 2020 , 10 , 974..
Li, H.; Liu, C.; Zhang, X.; Shi , K.; Huan, X.; Lin, S.; Wu, S.; Jia, X.; Cai, Q.; Yang, X. Catalyst-free synthesis of isocyanate-blocked imidazole and its use as high-performance latent hardener for epoxy resin. J. Mater. Sci. 2021 , 56 , 936−956..
Lou, C.; Zhang, X.; Wang, Y.; Chen, Z.; Li, H. Toughening epoxy resin with blocked isocyanate containing soft chain. J. Appl. Polym. Sci. 2015 , 132 , 41345..
Li, C.; Yang, X.; Wang, Y.; Liu, J.; Zhang, X. Core-shell nanostructured assemblies enable ultrarobust, notch-resistant and self-healing materials. Adv. Funct. Mater. 2024 , 34 , 9..
Li, Y.; Zhang, Z.; Rong, M.; Zhang, M. Breaking barriers: sunlight-activated self-healing polymers with unprecedented photoaging resistance. Susmat 2024 , 4 , e227..
Wicks, Douglas A.; Wicks, Zeno W. Multistep chemistry in thin films; the challenges of blocked isocyanates. Prog. Org. Coat. 2001 , 43 , 131−140..
Delebecq, E.; Pascault, J.; Boutevin, B.; Ganachaud, F. On the versatility of urethane/urea bonds: reversibility, blocke d isocyanate, and non-isocyanate polyurethane. Chem. Rev. 2013 , 113 , 80−118..
Döring, M.; Arnold, U. Polymerization of epoxy resins initiated by metal complexes. Polym. Int. 2009 , 58 , 976−988..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution