FOLLOWUS
a.Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
b.School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
dongpo.song@tju.edu.cn
Received:21 October 2024,
Revised:18 November 2024,
Accepted:2024-11-26,
Published Online:17 January 2025,
Published:01 March 2025
Scan QR Code
Wang, B. B.; Zhang, Z.; Wang, J. T.; Pan, L.; Li, Y. S.; Song, D. P. High-performance flow chemistry platform for scalable continuous synthesis of branched block copolymers with precise chain structures. Chinese J. Polym. Sci. 2025, 43, 457–467
Bang-Bang Wang, Zhuang Zhang, Jing-Tao Wang, et al. High-performance Flow Chemistry Platform for Scalable Continuous Synthesis of Branched Block Copolymers with Precise Chain Structures[J]. Chinese journal of polymer science, 2025, 43(3): 457-467.
Wang, B. B.; Zhang, Z.; Wang, J. T.; Pan, L.; Li, Y. S.; Song, D. P. High-performance flow chemistry platform for scalable continuous synthesis of branched block copolymers with precise chain structures. Chinese J. Polym. Sci. 2025, 43, 457–467 DOI: 10.1007/s10118-025-3273-2.
Bang-Bang Wang, Zhuang Zhang, Jing-Tao Wang, et al. High-performance Flow Chemistry Platform for Scalable Continuous Synthesis of Branched Block Copolymers with Precise Chain Structures[J]. Chinese journal of polymer science, 2025, 43(3): 457-467. DOI: 10.1007/s10118-025-3273-2.
A powerful flow chemistry platform for scalable synthesis of branched block copolymers was developed. This new method has many advantages over traditional batch methods
including high-throughput production (≥ 96 g/d)
high efficiency in obtaining polymer libraries (≥ 528 samples/d)
precise degree of polymerization (DP ≤ 4 repeat units)
narrow molecular weight distribution (PDI < 1.2)
and high stability over time (SD ≤ 3%).
Cutting-edge research has primarily focused on flow synthesis of linear block copolymers
lacking the ability for manipulating chain architectures for more extensive applications. Herein
we develop a flow chemistry platform for the continuous microflow synthesis of bottlebrush block copolymers (BBCPs) using a grafting-through method. This involves performing ring-opening metathesis polymerization (ROMP) of two different macromonomers within two microfluidic reactors connected in series. The microflow environment allows for complete monomer conversion within a few tens of seconds
benefiting from the superior mixing efficiency achieved in Z-shaped channels as indicated by both theoretical simulations and experimental results. Consequently
a library of well-defined BBCPs of up to 528 distinct samples can be produced within one day through automation of the continuous procedure
while keeping precise control on degree of polymerization (DP<4) and polydispersity indices (PDI<1.2). The synthetic method is generally applicable to different macromonomers with different compositions and contour lengths
yielding libraries of branched block copolymers with great diversity in physiochemical properties and chain architectures. This work presents a powerful platform for high-throughput production of branched copolymers
significantly lowering the costs of the materials for real applications.
Rzayev, J. Molecular bottlebrushes: new opportunities in nanomaterials fabrication. ACS Macro Lett. 2012 , 1 , 1146−1149..
Verduzco, R.; Li, X.; Pesek, S. L.; Stein, G. E. Structure, function, self-assembly, and applications of bottlebrush copolymers. Chem. Soc. Rev. 2015 , 44 , 2405−2420..
Liber man-Martin, A. L.; Chu, C. K.; Grubbs, R. H. Application of bottlebrush block copolymers as photonic crystals. Macromol. Rapid Commun. 2017 , 38 , 1700058..
Xie, G.; Martinez, M. R.; Olszewski, M.; Sheiko, S. S.; Matyjaszewski, K. Molecular bottlebrushes as novel materials. Biomacromolecules 2019 , 20 , 27−54..
Li, Z.; Tang, M.; Liang, S.; Zhang, M.; Biesold, G. M.; He, Y.; Hao, S. M.; Choi, W.; Liu, Y.; Peng, J.; Lin, Z. Bottlebrush polymers: from controlled synthesis, self-assembly, properties to applications. Prog. Polym. Sci. 2021 , 116 , 101387..
Blosch, S. E.; Scannelli, S. J.; Alaboalirat, M.; Matson, J. B. Complex polymer architectures using ring-opening metathesis polymerization: synthesis, applications, and practical considerations. Macromolecules 2022 , 55 , 4200−4227..
Pelras, T.; Mahon, C. S.; Müllner, M. Synthesis and applications of compartmentalised molecular polymer brushes. Angew. Chem. Int. Ed. 2018 , 57 , 6982−6994..
Liu, S.; Yang, Y.; Zhang, L.; Xu, J.; Zhu, J. Recent progress in responsive photonic crystals of block copolymers. J. Mater. Chem. C 2020 , 8 , 16633−16647..
Wang, Z.; Chan, C. L. C.; Zhao, T. H.; Parker, R. M.; Vignolini, S. Recent advances in block copolymer self-assembly for the fabrication of photonic films and pigments. Adv. Opt. Mater. 2021 , 9 , 2100519..
Miyake, G. M.; Piunova, V. A.; Weitekamp, R. A.; Grubbs, R. H. Precisely tunable photonic crystals from rapidly self-assembling brush block copolymer blends. Angew. Chem. Int. Ed. 2012 , 51 , 11246−11248..
Macfarlane, R. J.; Kim, B.; Lee, B.; Weitekamp, R. A.; Bates, C. M.; Lee, S. F.; Chang, A. B.; Delaney, K. T.; Fredrickson, G. H.; Atwater, H. A.; Grubbs, R. H. Improving brush polymer infrared one-dimensional photonic crystals via linear polymer additives. J. Am. Chem. Soc. 2014 , 136 , 17374−17377..
Song, D. P.; Li, C.; Colella, N. S.; Xie, W.; Li, S.; Lu, X.; Gido, S.; Lee, J. H.; Watkins, J. J. Large-volume self-organization of polymer/nanoparticle hybrids with millimeter-scale grain sizes using brush block copolymers. J. Am. Chem. Soc. 2015 , 137 , 12510−12513..
Song, D.-P.; Li, C.; Li, W.; Watkins, J. J. Block copolymer nanocomposites with high refractive index contrast for one-step photonics. ACS Nano 2016 , 10 , 1216−1223..
Vatankhah-Varnosfaderani, M.; Keith, A. N.; Cong, Y.; Liang, H.; Rosenthal, M.; Sztucki, M.; Clair, C.; Magonov, S.; Ivanov, D. A.; Dobrynin, A. V.; Sheiko, S. S. Chameleon-like elastomers with molecularly encoded strain-adaptive stiffening and coloration. Science 2018 , 359 , 1509−1513..
Yang, Y.; Kim, H.; Xu, J.; Hwang, M. S.; Tian, D.; Wang, K.; Zhang, L.; Liao, Y.; Park, H. G.; Yi, G. R.; Xie, X.; Zhu, J. Responsive block copolymer photonic microspheres. Adv. Mater. 2018 , 30 , 1707344..
Song, D.-P.; Zhao, T. H.; Guidetti, G.; Vignolini, S.; Parker, R. M. Hierarchical photonic pigments via the confined self-assembly of bottlebrush block copolymers. ACS Nano 2019 , 13 , 1764−1771..
Yang, Y.; Chen, Y.; Hou, Z.; Li, F.; Xu, M.; Liu, Y.; Tian, D.; Zhang, L.; Xu, J.; Zhu, J. Responsive photonic crystal microcapsules of block copolymers with enhanced monochromaticity. ACS Nano 2020 , 14 , 16057−16064..
Zhao, T. H.; Jacucci, G.; Chen, X.; Song, D. P.; Vignolini, S.; Parker, R. M. Angular-independent photonic pigments via the controlled micellization of amphiphilic bottlebrush block copolymers. Adv. Mater. 2020 , 32 , 2002681..
He, Q.; Ku, K. H.; Vijayamohanan, H.; Kim, B. J.; Swager, T. M. Switchable full-color reflective photonicellipsoidal particles. J. Am. Chem. Soc. 2020 , 142 , 10424−10430..
Kim, J.; Yun, H.; Lee, Y. J.; Lee, J.; Kim, S. H.; Ku, K. H.; Kim, B. J. Photoswitchable surfactant-driven reversible shape- and color-changing block copolymer particles. J. Am. Chem. Soc. 2021 , 143 , 13333−13341..
Chen, X.; Yang, X.; Song, D. P.; Men, Y. F.; Li, Y. Discovery and insights into organized spontaneous emulsification via interfacial self-assembly of amphiphilic bottlebrush block copolymers. Macromolecules 2021 , 54 , 3668−3677..
Li, Y.-L.; Chen, X.; Geng, H. K.; Dong, Y.; Wang, B.; Ma, Z.; Pan, L.; Ma, G. Q.; Song, D. P.; Li, Y. S. Oxidation control of bottlebrush molecular conformation for producing libraries of photonic structures. Angew. Chem. Int. Ed. 2021 , 60 , 3647−3653..
Guo, Q.; Xue, R.; Zhao, J.; Zhang, Y.; van de Kerkhof, G. T.; Zhang, K.; Li, Y.; Vignolini, S.; Song, D. P. Precise tailoring of polyester bottlebrush amphiphiles toward eco-friendly photonic pigments via interfacial self-assembly. Angew. Chem. Int. Ed. 2022 , 61 , e202206723..
Guo, Q.; Li, Y.; Liu, Q.; Li, Y.; Song, D. P. Janus photonic microspheres with bridged lamellar structures via droplet-confined block copolymer co-assembly. Angew. Chem. Int. Ed. 2022 , 61 , e202113759..
He, Q.; Vijayamohanan, H.; Li, J.; Swager, T. M. Multifunctional photonic janus particles. J. Am. Chem. Soc. 2022 , 144 , 5661−5667..
Xia, Y.; Kornfield, J. A.; Grubbs, R. H. Efficient synthesis of narrowly dispersed brush polymers via living ring-opening metathesis polymerization of macromonomers. Macromolecules 2009 , 42 , 3761−3766..
Teo, Y. C.; Xia, Y. Importance of macromonomer quality in the ring-opening metathesis polymerization of macromonomers. Macromolecules 2015 , 48 , 5656−5662..
Radzinski, S. C.; Foster, J. C.; Chapleski, R. C.; Troya, D.; Matson, J. B. Bottlebrush polymer synthesis by ring-opening metathesis polymerization: the significance of the anchor group. J. Am. Chem. Soc. 2016 , 138 , 6998−7004..
Jiang, L.; Nykypanchuk, D.; Ribbe, A. E.; Rzayev, J. One-shot synthesis and melt self-assembly of bottlebrush copolymers with a gradient compositional profile. ACS Macro Lett. 2018 , 7 , 619−623..
Gao, H.; Matyjaszewski, K. Synthesis of molecular brushes by “grafting onto” method: Combination of ATRP and click reactions. J. Am. Chem. Soc. 2007 , 129 , 6633−6639..
Han, D.; Tong, X.; Zhao, Y. One-pot synthesis of brush diblock copolymers through simultaneous ATRP and click coupling. Macromolecules 2011 , 44 , 5531−5536..
Xiao, L.; Chen, Y.; Zhang, K. Efficient metal-free “grafting onto” meth od for bottlebrush polymers by combining RAFT and triazolinedione-diene click reaction. Macromolecules 2016 , 49 , 4452−4461..
Gan, W.; Shi, Y.; Jing, B.; Cao, X.; Zhu, Y.; Gao, H. Produce molecular brushes with ultrahigh grafting density using accelerated CuAAC grafting-onto strategy. Macromolecules 2017 , 50 , 215−222..
Su, Y. X.; Xu, L.; Xu, X. H.; Hou, X. H.; Liu, N.; Wu, Z. Q. Controlled synthesis of densely grafted bottlebrushes that bear helical polyisocyanide side chains on polyisocyanide backbones and exhibit greatly increased viscosity. Macromolecules 2020 , 53 , 3224−3233..
Hu, B.; Carrillo, J. M.; Collins, L.; Silmore, K. S.; Keum, J.; Bonnesen, P. V.; Wang, Y.; Retterer, S.; Kumar, R.; Lokitz, B. S. Modular approach for the synthesis of bottlebrush diblock copolymers from poly(glycidyl methacrylate)-block-poly(vinyldimethylazlactone) backbones. Macromolecules 2022 , 55 , 488−497..
Kim, E. J.; Shin, J. J.; Lee, G. S.; Kim, S.; Park, S.; Park, J.; Choe, Y.; Lee, D.; Choi, J.; Bang, J.; Kim, Y. H.; Li, S.; Hur, S. M.; Kim, J. G.; Kim, B. J. Synthesis and self-assembly of poly(vinylpyridine)-containing brush block copolymers: combined synthesis of grafting-through and grafting -to approaches. Macromolecules 2022 , 55 , 1590−1599..
Sumerlin, B. S.; Neugebauer, D.; Matyjaszewski, K. Initiation efficiency in the synthesis of molecular brushes by grafting from via atom transfer radical polymerization. Macromolecules 2005 , 38 , 702−708..
Xie, G.; Martinez, M. R.; Daniel, W. F. M.; Keith, A. N.; Ribelli, T. G.; Fantin, M.; Sheiko, S. S.; Matyjaszewski, K. Benefits of catalyzed radical termination: high-yield synthesis of polyacrylate molecular bottlebrushes without gelation. Macromolecules 2018 , 51 , 6218−6225..
Olszewski, M.; Li, L.; Xie, G.; Keith, A.; Sheiko, S. S.; Matyjaszewski, K. Degradable cellulose-based polymer brushes with controlled grafting densities. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57 , 2426−2435..
Aviv, Y.; Altay, E.; Fink, L.; Raviv, U.; Rzayev, J.; Shenhar, R. Quasi-two-dimensional assembly of bottlebrush block copolymers with nanoparticles in ultrathin films: combined effect of graft asymmetry andnanoparticle size. Macromolecules 2019 , 52 , 196−207..
Yamauchi, Y.; Horimoto, N. N.; Yamada, K.; Matsushita, Y.; Takeuchi, M.; Ishida, Y. Two-step divergent synthesis of monodisperse and ultra-long bottlebrush polymers from an easily purifiable ROMP monomer. Angew. Chem. Int. Ed. 2021 , 60 , 1528−1534..
Aviv, Y.; Altay, E.; Rzayev, J.; Shenhar, R. Assembly of bottlebrush block copolymers and nanoparticles in ultrathin films: effect of substrate-copolymer interaction on the nanocomposite morphology. Macromolecules 2021 , 54 , 6247−6256..
Tonhauser, C.; Natalello, A.; Löwe, H.; Frey, H. Microflow technology in polymer synthesis. Macromolecules 2012 , 45 , 9551−9570..
Knox, S. T.; Warren, N. J. Enabling technologies in polymer synthesis: accessing a new design space for advanced polymer materials. React. Chem. Eng. 2020 , 5 , 405−423..
Zaquen, N.; Rubens, M.; Corrigan, N.; Xu, J.; Zetterlund, P. B.; Boyer, C.; Junkers, T. Polymer synthesis in continuous flow reactors. Prog. Polym. Sci. 2020 , 107 , 101256..
Reis, M. H.; Leibfarth, F. A.; Pitet, L. M. Polymerizations in continuous flow: recent advances in the synthesis of diverse polymeric materials. ACS Macro Lett. 2020 , 9 , 123−133..
Chen, M.; Johnson, J. A. Improving photo-controlled living radical polymerization from trithiocarbonates through the use of continuous-flow techniques. Chem. Commun. 2015 , 51 , 6742−6745..
Rubens, M.; Vrijsen, J. H.; Laun, J.; Junkers, T. Precise polymer synthesis by autonomous self-optimizing flow reactors. Angew. Chem. Int. Ed. 2019 , 58 , 3183−3187..
Lin, B.; Hedrick, J. L.; Park, N. H.; Waymouth, R. M. Programmable high-throughput platform for the rapid and scalable synthesis of polyester and polycarbonate libraries. J. Am. Chem. Soc. 2019 , 141 , 8921−8927..
Walsh, D. J.; Dutta, S.; Sing, C. E.; Guironnet, D. Engineering of molecular geometry in bottlebrush polymers. Macromolecules 2019 , 52 , 4847−4857..
Zhou, Y.; Gu, Y.; Jiang, K.; Chen, M. Droplet-flow photopolymer ization aided by computer: overcoming the challenges of viscosity and facilitating the generation of copolymer libraries. Macromolecules 2019 , 52 , 5611−5617..
Liu, K.; Corrigan, N.; Postma, A.; Moad, G.; Boyer, C. A comprehensive platform for the design and synthesis of polymer molecular weight distributions. Macromolecules 2020 , 53 , 8867−8882..
Walsh, D. J.; Schinski, D. A.; Schneider, R. A.; Guironnet, D. General route to design polymer molecular weight distributions through flow chemistry. Nat. Commun. 2020 , 11 , 3094..
Chen, K.; Han, W.; Hu, X.; Liu, Y.; Hu, Y.; Zhao, S.; Zhu, N.; Fang, Z.; Guo, K. Microreactor-based chemo-enzymatic ROP-ROMP platform for continuous flow synthesis of bottlebrush polymers. Chem. Eng. J. 2022 , 437 , 135284..
Walsh, D. J.; Guironnet, D. Macromolecules with programmable shape, size, and chemistry. Proc. Nat. Acad. Sci. 2019 , 116 , 1538−1542..
Morsbach, J.; Müller, A. H. E.; Berger-Nicoletti, E.; Frey, H. Living polymer chains with predicta ble molecular weight and dispersity via carbanionic polymerization in continuous flow: mixing rate as a key parameter. Macromolecules 2016 , 49 , 5043−5050..
Lauterbach, F.; Rubens, M.; Abetz, V.; Junkers, T. Ultrafast photoraft block copolymerization of isoprene and styrene facilitated through continuous-flow operation. Angew. Chem. Int. Ed. 2018 , 57 , 14260−14264..
Peng, J.; Xu, Q.; Ni, Y.; Zhang, L.; Cheng, Z.; Zhu, X. Visible light controlled aqueous RAFT continuous flow polymerization with oxygen tolerance. Polym. Chem. 2019 , 10 , 2064−2072..
Nagaki, A.; Miyazaki, A.; Yoshida, J. I. Synthesis of polystyrenes-poly(alkyl methacrylates) block copolymers via anionic polymerization using an integrated flow microreactor system. Macromolecules 2010 , 43 , 8424−8429..
Nagaki, A.; Takahashi, Y.; Akahori, K.; Yoshida, J.-i. Living anionic polymerization of tert -butyl acrylate in a flow microreactor system and its applications to the synthesis of block copolymers. Macromol. React. Eng. 2012 , 6 , 467−472..
Li, Z.; Chen, W.; Zhang, L.; Cheng, Z.; Zhu, X. Fast RAFT aqueous polymerization in a continuous tubular reactor: consecutive synthesis of a double hydrophilic block copolymer. Polym. Chem. 2015 , 6 , 5030−5035..
Wenn, B.; Junkers, T. Continuous microflow photoraft polymerization. Macromolecules 2016 , 49 , 6888−6895..
Baeten, E.; Haven, J. J.; Junkers, T. RAFT multiblock reactor telescoping: from monomers to tetrablock copolymers in a continuous multistage reactor cascade. Polym. Chem. 2017 , 8 , 3815−3824..
Corrigan, N.; Manahan, R.; Lew, Z. T.; Yeow, J.; Xu, J.; Boyer, C. Copolymers with controlled molecular weight distributions and compositional gradients through flow polymerization. Macromolecules 2018 , 51 , 4553−4563..
Zaquen, N.; Kadir, A. M. N. B. P. H. A.; Iasa, A.; Corrigan, N.; Junkers, T.; Zetterlund, P. B.; Boyer, C. Rapid oxygen tolerant aqueous RAFT photopolymerization in continuous flow reactors. Macromolecules 2019 , 52 , 1609−1619..
Subnaik, S. I.; Hobbs, C. E. Flow-facilitated ring opening metathesis polymerization (ROMP) and post-polymerization modification reactions. Polym. Chem. 2019 , 10 , 4524−4528..
Zhang, B.; Mathoor, A.; Junkers, T. High throughput multidimensional kinetic screening in continuous flow reactors. Angew. Chem. Int. Ed. 2023 , 62 , e202308838..
Reis, M. H.; Varner, T. P.; Leibfarth, F. A. The influence of residence time distribution on continuous-flow polymerization. Macromolecules 2019 , 52 , 3551−3557..
Chang, A. B.; Bates, C. M.; Lee, B.; Garland, C. M.; Jones, S. C.; Spencer, R. K. W.; Matsen, M. W.; Grubbs, R. H. Manipulating the abcs of self-assembly via low- χ block polymer design. Proc. Nat. Acad. Sci. 2017 , 114 , 6462−6467..
Sauvé, E. R.; Tonge, C. M.; Hudson, Z. M. Aggregation-induced energy transfer in color-tunable multiblock bottlebrush nanofibers. J. Am. Chem. Soc. 2019 , 141 , 16422−16431..
Sun, Z.; Liu, R.; Su, T.; Huang, H.; Kawamoto, K.; Liang, R.; Liu, B.; Zhong, M.; Alexander-Katz, A.; Ross, C. A.; Johnson, J. A. Emergence of layered nanoscale mesh networks through intrinsic molecular confinement self-assembly. Nat. Nanotechnol . 2023 , 18 , 273−280..
Xue, Y.; Song, Q.; Liu, Y.; Smith, D.; Li, W.; Zhong, M. Hierarchically structured nanocomposites via mixed-graft block copolymer templating: achieving controlled nanostructure and functionality. J. Am. Chem. Soc. 2024 , 146 , 567−577..
Pham, D. A.; Wang, C. S.; Séguy, L.; Zhang, H.; Benbabaali, S.; Faivre, J.; Sim, S.; Xie, G.; Olszewski, M.; Rabanel, J. M.; Moldovan, F.; Matyjaszewski, K.; Banquy, X. Bioinspired bottlebrush polymers effectively alleviate frictional damage both in vitro and in vivo. Adv. Mater . 2024, 36 , 2401689..
Cui, S.; Murphy, E. A.; Zhang, W.; Zografos, A.; Shen, L.; Bates, F. S.; Lodge, T. P. Cylinders-in-undulating-lamellae morphology from abc bottlebrush block terpolymers. J. Am. Chem. Soc. 2024 , 146 , 6796−6805..
0
Views
7
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution