Cheng, T. Y.; Ding, J. Q.; Tong, Y. X.; Fang, J. G.; Wang, J. Hyperbranched poly(α-aminonitrile)s constructed via catalyst-free multicomponent polymerization of trialdehydes, diamines and trimethylsilyl cyanide. Chinese J. Polym. Sci. 2025, 43, 359–367
TIAN-YU CHENG, JIAN-QING DING, YU-XIN TONG, et al. Hyperbranched Poly(α-aminonitrile)s Constructed via Catalyst-Free Multicomponent Polymerization of Trialdehydes, Diamines and Trimethylsilyl Cyanide. [J/OL]. Chinese journal of polymer science, 2025, 43359-367.
Cheng, T. Y.; Ding, J. Q.; Tong, Y. X.; Fang, J. G.; Wang, J. Hyperbranched poly(α-aminonitrile)s constructed via catalyst-free multicomponent polymerization of trialdehydes, diamines and trimethylsilyl cyanide. Chinese J. Polym. Sci. 2025, 43, 359–367 DOI: 10.1007/s10118-025-3271-4.
TIAN-YU CHENG, JIAN-QING DING, YU-XIN TONG, et al. Hyperbranched Poly(α-aminonitrile)s Constructed via Catalyst-Free Multicomponent Polymerization of Trialdehydes, Diamines and Trimethylsilyl Cyanide. [J/OL]. Chinese journal of polymer science, 2025, 43359-367. DOI: 10.1007/s10118-025-3271-4.
Hyperbranched Poly(α-aminonitrile)s Constructed via Catalyst-Free Multicomponent Polymerization of Trialdehydes, Diamines and Trimethylsilyl Cyanide
and trimethylsilyl cyanide could easily undergo multicomponent polymerization under mild conditions
producing hyperbranched poly(α-aminonitrile)s with high molecular weights in good yields. The hyperbranched poly(α-aminonitrile)s show good solubility
high thermal stability and morphological stability. Furthermore
these
hb
-poly(α-aminonitrile)s can undergo post-polymerization with high efficiency.
Abstract
Functional hyperbranched polymers
as an important class of materials
are widely applied in diverse areas. Therefore
the development of simple and efficient reactions to prepare hyperbranched polymers is of great significance. In this work
trialdehydes
diamines
and trimethylsilyl cyanide could easily undergo multicomponent polymerizatio
n under mild conditions
producing hyperbranched poly(
α
-aminonitrile)s with high molecular weights (
M
w
up to 48700) in good yields (up to 85%). The hyperbranched poly(
α
-aminonitrile)s have good solubility in commonly used organic solvents
high thermal stability as well as morphological stability. Furthermore
due to the numerous aldehyde groups in their branched chains
these
hb
-poly(
α
-aminonitrile)s can undergo one-pot
two-step
four-component post-polymerization with high efficiency. This work not only confirms the efficiency of our established catalyst-free multicomponent polymerization of aldehydes
amines and trimethylsilyl cyanide
but also provides a versatile and powerful platform for the preparation of functional hyperbranched polymeric materials.
Wang, D.; Zhao, T.; Zhu, X.; Yan, D.; Wang, W. Bioapplications of hyperbranched polymers.Chem. Soc. Rev.2015,44, 4023−4071..
Wu, W.; Tang, R.; Li, Q.; Li, Zhen. Functional hyperbranched polymers with advanced optical, electrical and magnetic properties.Chem. Soc. Rev.2015,44, 3997−4022..
Zheng, Y.; Li, S.; Weng, Z.; Gao, C. Hyperbranched polymers: advances from synthesis to applications.Chem. Soc. Rev.2015,44, 4091−4130..
Tian, C.; Zhou, K. C.; Lu, Y. F.; Li, J. J.; Yao, Y.; Tao, X. F.; Zhuang, Q. X.; Xie, Y. F.; Lin, S. L. Hyperbranched azopolymer with quadruple responsibility.Chinese J. Polym. Sci.2021,39, 1169−1176..
Wang, H.; Gong, J.; Tang, B. Z. A new class of organic nanoparticles through hyperbranching and crosslinking.Aggregate2024,5, e668..
Wang, X. Hu, R.; Zhao, Z.; Qin, A.; Tang, B. Z. Self-healing hyperbranched polytriazoles prepared by metal-free click polymerization of propiolate and azide monomers.Sci. China Chem.2016,59, 1554−1560..
Chen, S.; Xu, Z.; Zhang, D. Synthesis and application of epoxy-ended hyperbranched polymers.Chem. Eng. J.2018,343, 283−302..
Zhang, Y.; Yuan, J.; Hu, J.; Tian, Z.; Feng, W.; Yan, H. Toward understanding the cross-linking from molecular chains to aggregates by engineering terminals of supramolecular hyperbranched polysiloxane.Aggregate2024,5, e404..
Bai, T.; Zhang, Y.; Wang, L.; Yan, H.; Zhou, W. Construction of fluorescent hyperbranched polysiloxane-based clusteroluminogens with enhanced quantum yield and efficient cellular lighting.Aggregate2023,4, e267..
Gao, C.; Yan, D. Hyperbranched polymers: from synthesis to applications.Prog. Polym. Sci.2004,29, 183−275..
Hao, J.; Jikei, M.; Kakimoto, M. A. Preparation of hyperbranched aromatic polyimidesviaA2+B3approach.Macromolecules2002,35, 5372−5381..
Han, J.; Zhao, B.; Gao, Y.; Tang, A.; Gao, C. Sequential click synthesis of hyperbranched polymersviathe A2+CB2approach.Polym. Chem.2011,2, 2175−2178..
Chen, Y.; Wang, L.; Yu, H.; Zhao, Y.; Sun, R.; Jing, G.; Huang, J.; Khalid, H.; Abbasi, N. M.; Akram, M. Synthesis and application of polyethylene-based functionalized hyperbranched polymers.Prog. Polym. Sci.2015,45, 23−43..
Segawa, Y.; Higashihara, T.; Ueda, M. Synthesis of hyperbranched polymers with controlled structure.Polym. Chem.2013,4, 1746−1759..
Fu, X.; Qin, A.; Tang, B. Z. X-yne click polymerization.Aggregate2023,4, e350..
Wang, Z.; Shi, Y.; Wang, J.; Li, L.; Wu, H.; Yao, B.; Sun, J. Z.; Qin, A.; Tang, B. Z. Indium-catalyzed polycyclotrimerization of diynes: a facile route to prepare regioregular hyperbranched polyarylenes.Polym. Chem.2014,5, 5890−5894..
Rotstein, B. H.; Zaretsky, S.; Rai, V.; Yudin, A. K. Small heterocycles in multicomponent reactions.Chem. Rev.2014,114, 8323−8359..
Stiernet, P.; Debuigne, A. Imine-based multicomponent polymerization: concepts, structural diversity and applications.Prog. Polym. Sci.2022,128, 101528..
Hu, R.; Li, W.; Tang, B. Z. Recent advances in alkyne-based multicomponent polymerizations.Macromol. Chem. Phys.2016,217, 213−224..
Wang, C.; Yu, B.; Li, W.; Zou, W.; Cong, H.; Shen, Y. Effective strategy for polymer synthesis: Multicomponent reactions and click polymerization.Mater. Today. Chem.2022,25, 100948..
Liu, S.; Li, F.; Cao, W.; Hu, R.; Tang, B. Z. Functional hyperbranched polythioamides synthesized from catalyst-free multicomponent polymerization of elemental sulfur.Chin. J. Chem.2022,40, 725−733..
Xu, L.; Yang, K.; Hu, R.; Tang, B. Z. Multicomponent polymerization of alkynes, sulfonyl azide, and iminophosphorane at room temperature for the synthesis of hyperbranched poly(phosphorusamidine)s.Synlett2018,29, 2523−2528..
Zhang, Z.; Tan, Z.; Hong, C.; Wu, D.; You, Y. One-pot sequential multicomponent reaction and a multicomponent polymerization method for the synthesis of topologically different polymers.Polym. Chem.2016,7, 1468−1474..
Kim, H.; Bang, K. T.; Choi, I.; Lee, J. K.; Choi, T. L. Diversity-oriented polymerization: one-shot synthesis of library of graft and dendronized polymers by Cu-catalyzed multicomponent polymerization.J. Am. Chem. Soc.2016,138, 8612−8622..
Huang, Y.; Chen, P.; Wei, B.; Hu, R.; Tang, B. Z. Aggregation-induced emission-active hyperbranched poly(tetrahydro-pyrimidine)s synthesized from multicomponent tandem polymerization.Chinese J. Polym. Sci.2019,37, 428−436..
Deng, X.; Cui, Y.; Du, F.; Li, Z. Functional highly branched polymers from multicomponent polymerization (MCP) based on the ABC type Passerini reaction.Polym. Chem.2014,5, 3316−3320..
Jee, J. A.; Song, S.; Rudick, J. G. Enhanced reactivity of dendrons in the Passerini three-component reaction.Chem. Commun.2015,51, 5456−5459..
Patil, N. G.; Augustine, R.; Zhang, Y.; Hong, S. C.; Kim, I. Synthesis of stimuli-responsive heterofunctional dendrimer by Passerini multicomponent reaction.ACS omega2019,4, 6660−6668..
Cheng, T.; Wang, H.; Ding, J.; Fang, J.; Wang, J.; Li, M.; Chen, J.; Qin, A.; Tang, B. Z. Catalyst-free multicomponent polymerization of aldehydes, amines and trimethylsilyl cyanide toward poly(α-aminonitrile)s.Polym. Chem.2024,15, 2287−2295..
Kouznetsov, V. V.; Galvis, C. E. P. Strecker reaction and α-amino nitriles: recent advances in their chemistry, synthesis, and biological properties.Tetrahedron2018,74, 773−810..
Li, B.; Qin, A.; Tang, B. Z. Metal-free polycycloaddition of aldehyde-activated internal diynes and diazides toward post-functionalizable poly(formyl-1,2,3-triazole)s.Polym. Chem.2020,11, 3075−3083..
Wang, Y.; Wang, W.; Wang, X.; Cheng, X.; Qin, A.; Sun, J. Z.; Tang, B. Z. Polymerization of 1-chloro-2-benzaldehyde-acetylene using an NHC-Pd/AgOTf catalyst and post-polymerization modification.Polym. Chem.2017,8, 5546−5553..
Hyperbranched Polymeric Fluorosurfactants: Synthesis, Surface Activity and Their Application in Firefighting Foams
Diamines, CS2 and Monoisocyanide-participated Polymerizations for Large-scale Synthesis of Polythioureas and Thioformamide
Facile Fabrication of Hyperbranched Polyacetal Quaternary Ammonium with pH-Responsive Curcumin Release for Synergistic Antibacterial Activity
Related Author
Hua-Ji Liu
Yu Chen
Shuang Zhuang
Yan Wang
Pei-Yao Chen
Dan-Ling Yang
Ben Zhong Tang
Rong-Rong Hu
Related Institution
Tianjin Fire Research Institute of MEM
Department of Chemistry, School of Science, Tianjin University
AIE Institute
Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology