

FOLLOWUS
a.College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China
b.State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
c.College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
d.Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
yqliu@qdu.edu.cn (Y.Q.L.)
qdulmh@qdu.edu.cn (M.H.L.)
zsbo@bnu.edu.cn (Z.S.B.)
Published:01 February 2025,
Published Online:18 January 2025,
Received:04 September 2024,
Revised:08 October 2024,
Accepted:2024-11-08
Scan QR Code
CHEN-YI ZHANG, YU-QIANG LIU, HONG-XIANG LI, et al. Stretchable All-Small-Molecule Organic Solar Cells Enabled by Polymer Elastomer Confinement. [J]. Chinese journal of polymer science, 2025, 43(2): 271-277.
CHEN-YI ZHANG, YU-QIANG LIU, HONG-XIANG LI, et al. Stretchable All-Small-Molecule Organic Solar Cells Enabled by Polymer Elastomer Confinement. [J]. Chinese journal of polymer science, 2025, 43(2): 271-277. DOI: 10.1007/s10118-025-3265-2.
The elastomer SEBS is designed to confine the growth dynamics of small molecule donors and acceptors as well as the mechanical properties of blend films. The stretchability of the film is improved. This scheme promises a new strategy for the preparation of stretchable organic solar cells.
Intrinsic stretchability is a promising attribute of polymer organic solar cells (OSCs). However
rigid molecular blocks typically exhibit poor tensile prope
rties
rendering polymers vulnerable to mechanical stress. In this study
we introduce a different approach utilizing all-small-molecule donors and acceptors to fabricate stretchable OSCs. An elastomer
styrene-
b
-ethylene-butylene-styrene (SEBS)
was embedded to modulate film crystallization and stretchability. SEBS effectively confines the growth process of donors and acceptors
leading to enhancement of the crystallization quality
thus contributing to enhanced device efficiencies. Meanwhile
SEBS can absorb and release mechanical stress during stretching
thereby preventing mechanical degradation of donors and acceptors. The mechanical properties of the OSCs were significantly improved by the incorporation of SEBS. Notably
the crack-onset strain increased from 1.03% to 5.99% with SEBS embedding. These findings present a straightforward strategy for achieving stretchable OSCs using all small molecules
offering a different perspective for realizing stretchable devices.
All-small-moleculeOrganic solar cellsElastomerStretchabilityFlexibility
Fu, J.; Yang, Q.; Huang, P.; Chung, S.; Cho, K.; Kan, Z.; Liu, H.; Lu, X.; Lang, Y.; Lai, H.; He, F.; Fong, P. W. K.; Lu, S.; Yang, Y.; Xiao, Z.; Li, G. Rational molecular and device design enables organic solar cells approaching 20% efficiency.Nat. Commun.2024,15, 1830..
Sun, Y.; Wang, L.; Guo, C.; Xiao, J.; Liu, C.; Chen, C.; Xia, W.; Gan, Z.; Cheng, J.; Zhou, J.; Chen, Z.; Zhou, J.; Liu, D.; Wang, T.; Li, W. pi-Extended nonfullerene acceptor for compressed molecular packing in organic solar cells to achieve over 20% efficiency.J. Am. Chem. Soc.2024,146, 12011−12019..
Li, Y.; Zhang, Z.; Han, X.; Li, T.; Lin, Y. Fine-tuning contactviacomplexation for high-performance organic solar cells.CCS Chem.2022,4, 1087−1097..
Liu, Y. F.; Zhang, S. W.; Li, Y. X.; Li, S. L.; Huang, L. Q.; Jing, Y. N.; Cheng, Q.; Xiao, L. G.; Wang, B. X.; Han, B. Solution-processed molybdenum oxide hole transport layer stabilizes organic solar cells.Chinese J. Polym. Sci.2023,41, 202−211..
Liu, B. W.; Li, Z. R.; Yan, L. P.; Guo, J. B.; Luo, Q.; Ma, C. Q. ZnO surface passivation with glucose enables simultaneously improving efficiency and stability of inverted polymer: non-fullerene solar cells.Chinese J. Polym. Sci.2022,40, 1594−1603..
Wan, Q.; Seo, S.; Lee, S. W.; Lee, J.; Jeon, H.; Kim, T. S.; Kim, B. J.; Thompson, B. C. High-performance intrinsically stretchable polymer solar cell with record efficiency and stretchability enabled by thymine-functionalized terpolymer.J. Am. Chem. Soc.2023,145, 11914−11920..
Seo, S.; Lee, J. W.; Kim, D. J.; Lee, D.; Phan, T. N.; Park, J.; Tan, Z.; Cho, S.; Kim, T. S.; Kim, B. J. Poly(dimethylsiloxane)-block-pm6 polymer donors for high-performance and mechanically robust polymer solar cells.Adv. Mater.2023,35, 2300230..
Huang, W.; Jiang, Z.; Fukuda, K.; Jiao, X.; McNeill, C. R.; Yokota, T.; Someya, T. Efficient and mechanically robust ultraflexible organic solar cells based on mixed acceptors.Joule2020,4, 128−141..
Zheng, Y.; Zhang, S.; Tok, J. B. H.; Bao, Z. Molecular design of stretchable polymer semiconductors: current progress and future directions.J. Am. Chem. Soc.2022,144, 4699−4715..
Ding, Y.; Memon, W. A.; Zhang, D.; Zhu, Y.; Xiong, S.; Wang, Z.; Liu, J.; Li, H.; Lai, H.; Shao, M. Dimerized acceptors with conjugate-break linker enable highly efficient and mechanically robust organic solar cells.Angew. Chem.2024,136, e202403139..
Park, J. S.; Kim, G. U.; Lee, S.; Lee, J. W.; Li, S.; Lee, J. Y.; Kim, B. J. Material design and device fabrication strategies for stretchable organic solar cells.Adv. Mater.2022,34, 2201623..
Li, M.; Xian, K.; Zhao, W.; Sheng, D.; Liu, C.; Li, X.; Li, W.; Ye, L. Optimizing mechanical stretchability and photovoltaic performance in all-polymer solar cells from a two-donor polymer blend.Chem. Eng. J.2023,476, 146723..
Lee, J.-W.; Lee, H.-G.; Oh, E. S.; Lee, S.-W.; Phan, T. N.-L.; Li, S.; Kim, T.-S.; Kim, B. J. Rigid- and soft-block-copolymerized conjugated polymers enable high-performance intrinsically stretchable organic solar cells.Joule2024,8, 204−223..
Li, X.; Ke, H.; Li, S.; Gao, M.; Li, S.; Yu, J.; Xie, H.; Zhou, K.; Zhang, K.; Ye, L. Intrinsically stretchable organic photovoltaic cells with improved mechanical durability and stability via dual-donor polymer blending.Adv. Funct. Mater.2024,34, 2400702..
Lee, J. W.; Nguyen, T. H. Q.; Oh, E. S.; Lee, S.; Choi, J.; Kwon, H. S.; Wang, C.; Lee, S.; Lee, J. Y.; Kim, T. S.; Kim, B. J. Establishing co-continuous network of conjugated polymers and elastomers for high-performance polymer solar cells with extreme stretchability.Adv. Energy Mater.2024,14, 2401191..
Zheng, X.; Wu, X.; Wu, Q.; Han, Y.; Ding, G.; Wang, Y.; Kong, Y.; Chen, T.; Wang, M.; Zhang, Y.; Xue, J.; Fu, W.; Luo, Q.; Ma, C.; Ma, W.; Zuo, L.; Shi, M.; Chen, H. Thorough optimization for intrinsically stretchable organic photovoltaics.Adv. Mater.2024,36, 2307280..
Prete, M.; Ogliani, E.; Bregnhøj, M.; Lissau, J. S.; Dastidar, S.; Rubahn, H.-G.; Engmann, S.; Skov, A. L.; Brook, M. A.; Ogilby, P. R.; Printz, A.; Turkovic, V.; Madsen, M. Synergistic effect of carotenoid and silicone-based additives for photooxidatively stable organic solar cells with enhanced elasticity.J. Mater. Chem. C2021,9, 11838−11850..
Zhang, L.; Zhu, X.; Deng, D.; Wang, Z.; Zhang, Z.; Li, Y.; Zhang, J.; Lv, K.; Liu, L.; Zhang, X.; Zhou, H.; Ade, H.; Wei, Z. High miscibility compatible with ordered molecular packing enables an excellent efficiency of 16.2% in all-small-molecule organic solar cells.Adv. Mater.2022,34, 2106316..
Liu, H.; Fu, Y.; Chen, Z.; Wang, J.; Fu, J.; Li, Y.; Cai, G.; Su, C. J.; Jeng, U. S.; Zhu, H.; Li, G.; Lu, X. Dual-additive-driven morphology optimization for solvent-annealing-free all-small-molecule organic solar cells.Adv. Funct. Mater.2023,33, 2303307..
Sun, X.; Lv, J.; Wang, F.; Zhang, C.; Zhu, L.; Zhang, G.; Xu, T.; Luo, Z.; Lin, H.; Ouyang, X.; Yang, C.; Yang, C.; Li, G.; Hu, H. Efficiency boost in all-small-molecule organic solar cells: insights from the re-ordering kinetics.Adv. Energy Mater.2024,14, 2302731..
Xu, J.; Wang, S.; Wang, G. N.; Zhu, C.; Luo, S.; Jin, L.; Gu, X.; Chen, S.; Feig, V. R.; To, J. W.; Rondeau-Gagne, S.; Park, J.; Schroeder, B. C.; Lu, C.; Oh, J. Y.; Wang, Y.; Kim, Y. H.; Yan, H.; Sinclair, R.; Zhou, D.; Xue, G.; Murmann, B.; Linder, C.; Cai, W.; Tok, J. B.; Chung, J. W.; Bao, Z. Highly stretchable polymer semiconductor films through the nanoconfinement effect.Science2017,355, 59−64..
Song, X.; Xu, H.; Jiang, X.; Gao, S.; Zhou, X.; Xu, S.; Li, J.; Yu, J.; Liu, W.; Zhu, W.; Müller-Buschbaum, P. Film-formation dynamics coordinated by intermediate state engineering enables efficient thickness-insensitive organic solar cells.Energy Environ. Sci.2023,16, 3441−3452..
Wang, J.; Wang, Y.; Li, J.; Yu, Y.; Bi, P.; Qiao, J.; Chen, Z.; Wang, C.; Wang, W.; Dai, J.; Hao, X.; Zhang, S.; Hou, J. Low-cost fully non-fused ring acceptor enables efficient organic photovoltaic modules for multi-scene applications.Angew. Chem. Int. Ed.2023,62, 2314362..
Wang, J.; Bi, P.; Wang, Y.; Zheng, Z.; Chen, Z.; Qiao, J.; Wang, W.; Li, J.; An, C.; Zhang, S. Manipulating film formation kinetics enables organic photovoltaic cells with 19.5% efficiency.CCS Chem.2024,6, 218−229..
Wang, C.; Chen, Q.; Zhang, C.; Han, B.; Liu, X.; Liang, S.; Wang, B.; Xiao, C.; Gao, B.; Tang, Z. A 6-arm three-blade propeller electron acceptor for organic solar cells with efficiency over 19%.CCS Chem.2024,6, 1−11..
Ge, J.; Hong, L.; Song, W.; Xie, L.; Zhang, J.; Chen, Z.; Yu, K.; Peng, R.; Zhang, X.; Ge, Z. Solvent annealing enables 15.39% efficiency all-small-molecule solar cells through improved molecule interconnection and reduced non-radiative loss.Adv. Energy Mater.2021,11, 2100800..
Cui, X.; Li, H.; Lu, H.; Liu, Y.; Ran, G.; Liu, R.; Zhang, H.; Ma, X.; Li, D.; Lin, Y.; Yu, J.; Zhang, W.; Cai, L.; Liu, Y.; Cheng, P.; Zhang, A.; Ma, Z.; Lu, G.; Bo, Z. Highly efficient solution-processed organic photovoltaics enabled by improving packing behavior of organic semiconductors.Sci. China Chem.2023,67, 890−897..
Gu, X.; Wei, Y.; Yu, N.; Qiao, J.; Han, Z.; Lin, Q.; Han, X.; Gao, J.; Li, C.; Zhang, J. High-efficiency and low-energy-loss organic solar cells enabled by tuning conformations of dimeric electron acceptors.CCS Chem.2023,5, 2576−2588..
Koster, L. J. A.; Mihailetchi, V. D.; Ramaker, R.; Blom, P. W. M. Light intensity dependence of open-circuit voltage of polymer:fullerene solar cells.Appl. Phys. Lett.2005,86, 123509..
Nian, L.; Kan, Y.; Gao, K.; Zhang, M.; Li, N.; Zhou, G.; Jo, S. B.; Shi, X.; Lin, F.; Rong, Q.; Liu, F.; Zhou, G.; Jen, A. K. Y. Approaching 16% efficiency in all-small-molecule organic solar cells based on ternary strategy with a highly crystalline acceptor.Joule2020,4, 2223−2236..
Mihailetchi, V. D.; Koster, L. J.; Hummelen, J. C.; Blom, P. W. Photocurrent generation in polymer-fullerene bulk heterojunctions.Phys. Rev. Lett.2004,93, 216601..
Yang, Y. N.; Li, X. M.; Wang, S. J.; Duan, X. P.; Cai, Y. H.; Sun, X. B.; Wei, D. H.; Ma, W.; Sun, Y. M. An organic small molecule as a solid additive in non-fullerene organic solar cells with improved efficiency and operational stability.Chinese J. Polym. Sci.2023,41, 194−201..
Wang, H.; Lu, H.; Chen, Y. N.; Zhang, A.; Liu, Y.; Zhang, C. E.; Liu, Y.; Xu, X.; Bo, Z. Effect of polymer chain regularity on the photovoltaic performance of organic solar cells.Chinese J. Polym. Sci.2022,40, 996−1002..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621