FOLLOWUS
a.State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
b.Jiangsu Nantong Junyuan New Material Co., Ltd., Nantong 226000, China
yjr@dhu.edu.cn
Published:01 January 2025,
Published Online:11 December 2024,
Received:12 May 2024,
Revised:05 October 2024,
Accepted:2024-10-21
Scan QR Code
Wu, W. W.; Shang, J. X.; Li, N.; Wang, Y.; Yu, J. R.; Hu, Z. M. Ultralight and anisotropic heterocyclic para-aramid nanofiber/reduced graphene oxide composite aerogel for efficient thermal insulation and flame retardancy. Chinese J. Polym. Sci. 2025, 43, 141–152
WEN-WEN WU, JIAN-XUN SHANG, NA LI, et al. Ultralight and Anisotropic Heterocyclic
Wu, W. W.; Shang, J. X.; Li, N.; Wang, Y.; Yu, J. R.; Hu, Z. M. Ultralight and anisotropic heterocyclic para-aramid nanofiber/reduced graphene oxide composite aerogel for efficient thermal insulation and flame retardancy. Chinese J. Polym. Sci. 2025, 43, 141–152 DOI: 10.1007/s10118-025-3256-3.
WEN-WEN WU, JIAN-XUN SHANG, NA LI, et al. Ultralight and Anisotropic Heterocyclic
The anisotropic structure endows the HPAN/rGO composite aerogel with anisotropic mechanical and thermal-insulation properties. In addition
the composite aerogels exhibit good flame retardancy. Therefore
the HPAN/rGO composite aerogels with ultralight
porous
good thermal stability
and flame retardancy have broad application prospects for thermal insulation applications in extremely harsh environments.
The demand for anisotropic aerogels with excellent comprehensive properties in cutting-edge fields such as aerospace is growing. Based on the above background
a novel heterocyclic p
ara-aramid nanofiber/reduced graphene oxide (HPAN/rGO) composite aerogel was prepared by combining electrospinning and unidirectional freeze-drying. The anisotropic HPAN/rGO composite aerogel exhibited a honeycomb morphology in the direction perpendicular to the growth of ice crystals
and a through-well structure of directed microchannels in the direction parallel to the temperature gradient. By varying the mass ratio of HPAN/rGO
a composite aerogel with an ultra-low density of 5.34−7.81 mg·cm
−3
and an ultra-high porosity of 98%−99% was obtained. Benefiting from the anisotropic structure
the radial and axial thermal conductivities of HPAN/rGO-3 composite aerogel were 29.37 and 44.35 mW·m
−1
·K
−1
respectively. A combination of software simulation and experiments was used to analyze the effect of anisotropic structures on the thermal insulation properties of aerogels. Moreover
due to the intrinsic self-extinguishing properties of heterocyclic para-aramid and the protection of the graphene carbon layer
the composite aerogel also exhibits excellent flame retardancy properties
and its total heat release rate (THR) was only 5.8 kJ·g
−1
which is far superior to many reported aerogels. Therefore
ultralight anisotropic HPAN/rGO composite aerogels with excellent high-temperature thermal insulation and flame retardancy properties have broad application prospects in complex environments such as aerospace.
Heterocyclic para-aramid nanofiberReduced graphene oxideAnisotropyThermal insulationFlame retardancy
Koebel, M.; Rigacci, A.; Achard, P. Aerogel-based thermal superinsulation: an overview.J. Sol-Gel Sci. Technol.2012,63, 315−339..
Li, M.; Zhu, Z.; Jiao, R.; Chen, Y.; Cao, X.; Sun, H.; Li, J.; Li, A. Preparation of DOPO-KH550 modified hollow glass microspheres/PVA composite aerogel for thermal insulation and flame retardancy.J Colloid Interface Sci.2024,654, 719−730..
Ma, C. Q.; Xue, C. H.; Fan, W.; Guo, X. J.; Cheng, J.; Huang, M. C.; Wang, H. D.; Wu, Y. G.; Liu, B. Y.; Lv, S. Q. Synchronous radiative cooling and thermal insulation in SiO2/poly(vinyl alcohol) composite aerogel for energy savings in building thermal management.ACS Sustainable Chem. Eng.2024,12, 5695−5704..
Wu, Z. H.; Feng, X. L.; Qu, Y. X.; Gong, L. X.; Cao, K.; Zhang, G. D.; Shi, Y. Q.; Gao, J. F.; Song, P. G.; Tang, L. C. Silane modified MXene/polybenzazole nanocomposite aerogels with exceptional surface hydrophobicity, flame retardance and thermal insulation.Compos. Commun.2023,37, 101402..
Wang, D.; Peng, Y. D.; Dong, J. C.; Pu, L.; Chang, K. Q.; Yan, X. P.; Qian, H. L.; Li, L.; Huang, Y. P.; Liu, T. X. Hierarchically porous polyimide aerogel fibers based on the confinement of Ti3C2T xflakes for thermal insulation and fire retardancy.Compos. Commun.2023,37, 101429..
Ge, R.; Zhang, J.; Yang, N.; Fan, Z.; Yin, R.; Cheng, H.; Hong, C.; Zhang, X. Constructing lightweight ternary interpenetrating network of carbon fabric/siloxane/phenolic aerogels for long-time high-temperature thermal protection.Compos. Commun.2024,48, 101914..
Jiang, Y.; Zhang, T.; Wang, K.; Yang, J. Synthesis and characterization of rigid and thermostable polyimide aerogel crosslinked with tri(3-aminophenyl)phosphine oxide.J. Porous Mater.2017,24, 1353−1362..
Wu, S.; Du, A.; Xiang, Y.; Liu, M.; Li, T.; Shen, J.; Zhang, Z.; Li, C.; Zhou, B. Silica-aerogel-powders “jammed” polyimide aerogels with excellent hydrophobicity and conversion to ultra-light polyimide aerogel.RSC Adv.2016,6, 58268−58278..
Zhong, Y.; Kong, Y.; Zhang, J.; Chen, Y.; Li, B.; Wu, X.; Liu, S.; Shen, X.; Cui, S. Preparation and characterization of polyimide aerogels with a uniform nanoporous framework.Langmuir2018,34, 10529−10536..
Zhang, T.; Zhao, Y.; Wang, K. Polyimide aerogels cross-linked with aminated Ag nanowires: mechanically strong and tough.Polymers2017,9, 530..
Zhu, J.; Yang, M.; Emre, A.; Bahng, J. H.; Xu, L.; Yeom, J.; Yeom, B.; Kim, Y.; Johnson, K.; Green, P. Branched aramid nanofibers.Angew. Chem. Int. Ed.2017,56, 11744−11748..
Zhou, B.; Han, G.; Zhang, Z.; Li, Z.; Feng, Y.; Ma, J.; Liu, C.; Shen, C. Aramid nanofiber-derived carbon aerogel film with skin-core structure for high electromagnetic interference shielding and solar-thermal conversion.Carbon2021,184, 562−570..
Huang, Y.; Lai, F.; Zhang, L.; Lu, H.; Miao, Y. E.; Liu, T. Elastic carbon aerogels reconstructed from electrospun nanofibers and graphene as three-dimensional networked matrix for efficient energy storage/conversion.Sci. Rep.2016,6, 31541..
Qian, Z.; Wang, Z.; Zhao, N.; Xu, J. Aerogels derived from polymer nanofibers and their applications.Macromol. Rapid Commun.2018,39, e1700724..
Awang, N.; Nasir, A. M.;Yajid, M. A. M.; Jaafar, J. A review on advancement and future perspective of 3D hierarchical porous aerogels based on electrospun polymer nanofibers for electrochemical energy storage application.J. Environ. Chem. Eng.2021,9, 105437.
Deuber, F.; Mousavi, S.; Federer, L.; Adlhart, C. Amphiphilic nanofiber-based aerogels for selective liquid absorption from electrospun biopolymers.Adv. Mater. Interfaces2017,4, 1700065..
Jiang, S.; Uch, B.; Agarwal, S.; Greiner, A. Ultralight, thermally insulating, compressible polyimide fiber assembled sponges.ACS Appl. Mater. Interfaces2017,9, 32308−32315..
Jiang, S.; Cheong, J. Y.; Nam, J. S.; Kim, I. D.; Agarwal, S.; Greiner, A. High-density fibrous polyimide sponges with superior mechanical and thermal properties.ACS Appl. Mater. Interfaces2020,12, 19006−19014..
Gao, Q.; Tran, T.; Liao, X.; Rosenfeldt, S.; Gao, C.; Hou, H.; Retsch, M.; Agarwal, S.; Greiner, A. Ultralight heat-insulating, electrically conductive carbon fibrous sponges for wearable mechanosensing devices with advanced warming function.ACS Appl. Mater. Interfaces2022,14, 19918−19927..
Ni, L.; Luo, Y.; Wang, G.; Yan, L.; Gao, Y.; Meng, H.; Qiu, S.; Liang, M.; Zhou, S.; Zou, H. Microwave-assisted foaming of mechanically robust lightweight polyimide foams with anisotropic pore structures for thermal insulation applications.Ind. Eng. Chem. Res.2023,62, 12429−12442..
Li, B. X.; Qin, L. Y.; Yang, D. Z.; Luo, Z.; Zhao, T. Y.; Yu, Z. Z. Superelastic and responsive anisotropic silica nanofiber/polyvinylpyrrolidone/MXene hybrid aerogels for efficient thermal insulation andoverheating alarm applications.Compos. Sci. Technol.2022,225, 109484..
Guan, F. C.; Feng, S.; Sun, J. B.; Yang, Q.; Zhang, Y. H.; Li, Z.; Tao, J.; Ji, X. B.; Wang, Y. H.; Bao, D.; et al. Low–temperature superelastic, anisotropic, silane-crosslinked sodium alginate aerogel for thermal insulation.Int. J. Biol. Macromol.2024,262, 129800..
He, J. H.; Wan, Y. Q. Allometric scaling for voltage and current in electrospinning.Polymer2004,45, 6731−6734..
Beachley, V.; Wen, X. Effect of electrospinning parameters on the nanofiber diameter and length.Mater. Sci. Eng. C Mater. Biol. Appl.2009,29, 663−668..
Okutan, N.; Terzi, P.; Altay, F. Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers.Food Hydrocolloids2014,39, 19−26..
Kanwal, R.; Maqsood, M. F.; Raza, M. A.; Inam, A.; Waris, M.; Rehman, Z. U.; Mehdi, S. M. Z.; Abbas, N.; Lee, N. Polypyrrole coated carbon fiber/ magnetite/ graphene oxide reinforced hybrid epoxy composites for high strength and electromagnetic interference shielding.Mater. Today Commun.2024,38, 107684..
Wu, W. W.; Song, Q. Q.; Yu, J. R.; Li, N.; Hu, Z. M.; Wang, Y.; Zhu, J. High-performance heterocyclic para-aramid aerogels for selective dye adsorption and thermal insulation applications.J. Appl. Polym. Sci.2022,140, es3301..
Jin, Z. F.; E, S. F.; Luo, Z. R.; Ning, D. D.; Huang, J. Z.; Ma, Q.; Jia, F. F.; Lu, Z. Q. Investigations on the thermal conduction behaviors of reduced graphene oxide/aramid nanofibers composites.Diamond Relat. Mater.2021,116, 108422..
Zhang, W. L.; Liu, Y. Y.; Zhang, E. S.; Huang, H. Y.; Wang, P.; Zhang, H.; Li, W. J. Facile fabrication of robustly resilient, fire retardant, and thermal insulating graphene/polydimethylsiloxane aerogel composites by an interface-mediated strategy.Compos. Commun.2022,36, 101403..
Gholami, F.; Ghazitabar, A.; Naderi, M.; Hoviatdoost, A.; Ali Jani Ashna, D.; Ghazitabar, K.; Brycki, B.; Vretenár, V. Oil adsorption behavior of N-doped, co-decorated graphene/carbon nanotube/cellulose microfiber aerogels: a comprehensive investigation of composite component's effect.Surf. Interfaces2024,46, 103936..
Fan, J.; Shi, Z.; Zhang, L.; Wang, J.; Yin, J. Aramid nanofiber-functionalized graphene nanosheets for polymer reinforcement.Nanoscale2012,4, 7046−7055..
Miao, S. S.; Wang, Y.; Lu, M. H.; Liu, X. D.; Chen, Y. P.; Zhao, Y. J. Freezing-derived functional materials.Mater. Today2024,74, 235−268..
Zhu, J. D.; Zhao, F. X.; Peng, T. P.; Liu, H.; Xie, L.; Jiang, C. W. Highly elastic and robust hydroxyapatite nanowires/polyimide composite aerogel with anisotropic structure for thermal insulation.Composites, Part B2021,223, 109081..
Xiao, H.; Lv, J. B.; Tan, W.; He, X.; Chen, M. H.; Zeng, K.; Hu, J. H.; Yang, G. Ultrasound-assisted freeze-drying process for polyimide aerogels.Chem. Eng. J.2022,450, 138344..
Jiang, X.; Zhao, Z.; Zhou, S.; Zou, H.; Liu, P. Anisotropic and lightweight carbon/graphene composite aerogels for efficient thermal insulation and electromagnetic interference shielding.ACS Appl. Mater. Interfaces2022,14, 45844−45852..
Qiao, S. Y.; Kang, S.; Zhu, J.; Wang, Y.; Yu, J. R.; Hu, Z. M. A synergistic self-assembly strategy to fabricate thermally stable OPAN/PI composite aerogels for particulate matter removal.Mater. Chem. Front.2021,5, 8308−8318..
Zhao, X. Y.; Yang, F.; Wang, Z. C.; Ma, P. M.; Dong, W. F.; Hou, H. Q.; Fan, W.; Liu, T. X. Mechanically strong and thermally insulating polyimide aerogels by homogeneity reinforcement of electrospun nanofibers.Composites Part B2020,182. 107624..
Pan, Y.; Zheng, J.; Xu, Y.; Chen, X.; Yan, M.; Li, J.; Zhao, X.; Feng, Y.; Ma, Y.; Ding, M.; et al. Ultralight, highly flexible in situ thermally crosslinked polyimide aerogels with superior mechanical and thermal protection propertiesviananofiber reinforcement.J. Colloid Interface Sci.2022,628, 829−839..
Zhu, J.; Lv, S. S.; Yang, T. H.; Huang, T.; Yu, H.; Zhang, Q. H.; Zhu, M. F. Facile and green strategy for designing ultralight, flexible, and multifunctional PVA nanofiber-based aerogels.Adv. Sustainable Syst.2020,4. 1900141..
Wang, F.; Dou, L.; Dai, J.; Li, Y.; Huang, L.; Si, Y.; Yu, J.; Ding, B. In situ synthesis of biomimetic silica nanofibrous aerogels with temperature-invariantsuperelasticity over one Million compressions.Angew. Chem. Int. Ed.2020,59, 8285−8292..
Wu, H.; Li, Y.; Zhao, L.; Wang, S.; Tian, Y.; Si, Y.; Yu, J.; Ding, B. Stretchable and superelastic fibrous sponges tailored by "stiff-soft" bicomponent electrospun fibers for warmth retention.ACS Appl. Mater. Interfaces2020,12, 27562−27571..
Yang, F.; Zhao, X. Y.; Xue, T. T.; Yuan, S. J.; Huang, Y. P.; Fan, W.; Liu, T. X. Superhydrophobic polyvinylidene fluoride/polyimide nanofiber compositeaerogels for thermal insulation under extremely humid and hot environment.Sci. China Mater.2020,64, 1267−1277..
You, H. N.; Zhao, Q. H.; Mei, T.; Li, X. F.; You, R. C.; Wang, D. Self-reinforced polymer nanofiber aerogels for multifunctional applications.Macromol. Mater. Eng.2022,307. 2100971..
Zhang, S. Z.; Wang, J.; Wang, Z.; Xu, G. Y.; Jiang, Y. G.; Xiao, Y. Y.; Ding, F. Reusable nanoporous Al2O3-containing polyimide aerogels for thermal insulation of aircraft.ACS Appl. Nano Mater.2023,6, 15925−15936..
Zhang, S.; Wang, Z.; Hu, Y.; Ji, H.; Xiao, Y.; Wang, J.; Xu, G.; Ding, F. Ambient pressure drying to construct cellulose acetate/benzoxazine hybrid aerogels with flame retardancy, excellent thermal stability, and superior mechanical strength resistance to cryogenic temperature.Biomacromolecules2022,23, 5056−5064..
He, H.; Qin, Y.; Zhu, Z.; Jiang, Q.; Ouyang, S.; Wan, Y.; Qu, X.; Xu, J.; Yu, Z. Temperature-arousing self-powered fire warning e-textile based on p-n segment coaxialaerogel fibers for active fire protection in firefighting clothing.Nanomicro Lett.2023,15, 226..
Li, L. J.; Xiao, Y. Y.; Zhang, S. Z.; Feng, J. Z.; Jiang, Y. G.; Feng, J. Lightweight, strong and thermally insulating polymethylsilsesquioxane-polybenzoxazine aerogels by ambient pressure drying.J. Sol-Gel Sci. Technol.2021,106, 422−431..
Cheng, X. D.; Zhu, S. Y.; Pan, Y. L.; Deng, Y. R.; Shi, L.; Gong, L. L. Fire retardancy and thermal behaviors of cellulose nanofiber/zinc borate aerogel.Cellulose2020,27, 7463−7474..
Li, D. D.; Ke, Z.; Xu, K.; Dai, F. N.; Wang, M. X.; Chen, C. H.; Qian, G. T.; Yu, Y. H. Mechanically strong polyimide aerogels containing benzimidazole groups with excellent flame-retardant, thermal insulation and high service temperature.Chem. Eng. J.2023,461, 141722..
Zhang, S. Z.; Wang, J.; Lu, K. M.; Xu, G. Y.; Wang, Z.; Xiao, Y. Y.; Ji, H.; Yang, Z. Y.; Yang, Y.; Xiong, S. X. Polybenzoxazine aerogels for thermal protection at extremely high-temperature/cryogenic conditions.Polymer2022,261, 125424..
0
Views
3
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution