FOLLOWUS
a.Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
b.University of Chinese Academy of Sciences, Beijing 100049, China
leying@iccas.ac.cn (L.Y.Q.)
jiangj@iccas.ac.cn (J.J.)
Published:01 January 2025,
Published Online:21 October 2024,
Received:12 July 2024,
Revised:07 August 2024,
Accepted:2024-08-23
Scan QR Code
Chang, Q. H.; Wang, R. C.; Qing, L. Y.; Jiang, J. Trends in sequence-defined polyelectrolyte systems: a perspective. Chinese J. Polym. Sci. 2025, 43, 1–17
QIU-HUI CHANG, RUO-CHAO WANG, LE-YING QING, et al. Trends in Sequence-Defined Polyelectrolyte Systems: A Perspective. [J]. Chinese journal of polymer science, 2025, 43(1): 1-17.
Chang, Q. H.; Wang, R. C.; Qing, L. Y.; Jiang, J. Trends in sequence-defined polyelectrolyte systems: a perspective. Chinese J. Polym. Sci. 2025, 43, 1–17 DOI: 10.1007/s10118-024-3221-6.
QIU-HUI CHANG, RUO-CHAO WANG, LE-YING QING, et al. Trends in Sequence-Defined Polyelectrolyte Systems: A Perspective. [J]. Chinese journal of polymer science, 2025, 43(1): 1-17. DOI: 10.1007/s10118-024-3221-6.
The microstructure of the polyelectrolyte solution at bulk and sur/interface can be designed through the monomer sequence and surface polarization
thereby regulating the macroscopic properties. Here
we focus on the powerful tools including physics-driven simulations
theory-driven analytical methods
and data-driven machine learning approaches for constructing the structure-properties relationships of sequence-defined polyelectrolytes.
Polyelectrolytes (PEs) are polymers carrying ionizable groups along the chain backbone and play an important role in life and environmental sciences
industrial applications and other fields. Due to the complicated topological structure and electrostatic correlations of PEs
PEs exhibit very rich phase behavior and morphologies in both bulk and confined solutions. So far
many theories
simulations and machine learning approaches have been proposed to study the behavior of polyelectrolyte solutions
especially the intrinsic structu
re-property relationships. In this perspective
from a personal point of view
we present several recent trends in polyelectrolyte solutions. The main themes considered here are accelerated development of sequence-defined polyelectrolyte (SDPE)
via
artificial intelligence technology
liquid-liquid phase separation in bulk SDPE solutions
adsorption behaviors of SDPE in the vicinity of a single dielectric surface
and surface forces between two charged surfaces mediated by SDPE solutions.
Sequence-defined polyelectrolyteStructure-property relationshipsLiquid-liquid phase separationSurface and interface
Huber, K.; Scheler, U. New experiments for the quantification of counterion condensation.Curr. Opin. Colloid In.2012,17, 64−73..
Duan, C.; Wang, R. Electrostatics-Induced Nucleated Conformational Transition of Protein Aggregation.Phys. Rev. Lett.2023,130, 158401..
Rumyantsev, A. M.; Zhulina, E. B.; Borisov, O. V. Surface-Immobilized Interpolyelectrolyte Complexes Formed by Polyelectrolyte Brushes.ACS Macro Lett.2023,12, 1727−1732..
Shen, K.; Wang, Z.-G. Polyelectrolyte Chain Structure and Solution Phase Behavior.Macromolecules2018,51, 1706−1717..
Deodhar, C.; Soto-Cantu, E.; Uhrig, D.; Bonnesen, P.; Lokitz, B. S.; Ankner, J. F.; Kilbey, S. M. I. Hydration in Weak Polyelectrolyte Brushes.ACS Macro Lett.2013,2, 398−402..
Chremos, A.; Douglas, J. F. Polyelectrolyte association and solvation.J. Chem. Phys2018,149, 163305..
Wu, H.; Ting, J. M.; Werba, O.; Meng, S.; Tirrell, M. V. Non-equilibrium phenomena and kinetic pathways in self-assembled polyelectrolyte complexes.J. Chem. Phys2018,149, 163330..
Site, L. D.; Holm, C.; van der Vegt, N. F. A. InMultiscale Molecular Methods in Applied Chemistry; ed. by Kirchner, B., Vrabec, J., Eds.; Springer, Berlin Heidelberg New York, 2012 ; p. 251–294..
Yi, S.; Pan, C.; Hu, L.; Hu, Z. On the connections and differences among three mean- field approximations: a stringent test.Phys. Chem. Chem. Phys.2017,19, 18514−18518..
Cheng, R. P.; Gellman, S. H.; DeGrado, W. F.β-Peptides: From Structure to Function.Chem. Rev. 2001 ,101, 3219–3232..
De Leon Rodriguez, L. M.; Hemar, Y.; Cornish, J.; Brimble, M. A. Structure–mechanical property correlations of hydrogel formingβ-sheet peptides.Chem. Soc. Rev.2016,45, 4797−4824..
Waku, T.; Tanaka, N. Recent advances in nanofibrous assemblies based onβ-sheet- forming peptides for biomedical applications.Polym. Int.2017,66, 277−288..
Shi, Y.; Teng, P.; Sang, P.; She, F.; Wei, L.; Cai, J.γ-AApeptides: Design, Structure, and Applications.Acc. Chem. Res. 2016 ,49, 428–441..
Teng, P.; Shi, Y.; Sang, P.; Cai, J.γ-AApeptides as a New Class of Peptidomimetics.Chem. Eur. J. 2016 ,22, 5458–5466..
Shi, Y.; Sang, P.; Yin, G.; Gao, R.; Liang, X.; Brzozowski, R.; Odom, T.; Eswara, P.; Zheng, Y.; Li, X.; Cai, J. Aggregation-Induced Emissive and Circularly Polarized Homogeneous Sulfono-γ-AApeptide Foldamers.Adv. Opt. Mater.2020,8, 1902122..
Sun, J.; Zuckermann, R. N. Peptoid Polymers: A Highly Designable Bioinspired Material.ACS Nano2013,7, 4715−4732..
Yang, W.; Seo, J.; Kim, J. H. Protein-mimetic peptoid nanoarchitectures for pathogen recognition and neutralization.Nanoscale2023,15, 975−986..
Xuan, S.; Zuckermann, R. N. Engineering the atomic structure of sequence-defined peptoid polymers and their assemblies.Polymer2020,202, 122691..
Wu, D.; Lei, J.; Zhang, Z.; Huang, F.; Buljan, M.; Yu, G. Polymerization in living organisms.Chem. Soc. Rev.2023,52, 2911−2945..
Guo, J. L.; Lee, V. M. Y. Cell-to-cell transmission of pathogenic proteins in neurode- generative diseases.Nat. Med.2014,20, 130−138..
Müller-McNicoll, M.; Neugebauer, K. M. How cells get the message: dynamic assembly and function of mRNA–protein complexes.Nat. Rev. Genet.2013,14, 275−287..
Zhang, X.; Wang, J.; Zhang, Y.; Yang, Z.; Gao, J.; Gu, Z. Synthesizing biomaterials in living organisms.Chem. Soc. Rev.2023,52, 8126−8164..
Shi, J.; Quevillon, M. J.; Amorim Valença, P. H.; Whitmer, J. K. Predicting Adhesive Free Energies of Polymer–Surface Interactions with Machine Learning.ACS Appl. Mater. Interfaces2022,14, 37161−37169..
Lutz, J.-F.; Ouchi, M.; Liu, D. R.; Sawamoto, M. Sequence-Controlled Polymers.Science2013,341, 1238149..
Quiroz, F. G.; Chilkoti, A.Sequence-Controlled Polymers: Synthesis, Self-Assembly, and Properties; Vol.1170, ed.by Jean-François Lutz; Tara Y. Meyer; Makoto Ouchi; Mitsuo Sawamoto, American Chemical Society, p.15–33.
Nerantzaki, M.; Lutz, J.-F. Multistep Growth “Polymerizations”.Macromol. Chem. Phys.2022,223, 2100368..
van Dongen, S. F. M.; Elemans, J. A. A. W.; Rowan, A. E.; Nolte, R. J. M. Processive Catalysis.Angew. Chem. Int. Ed.2014,53, 11420−11428..
Lewandowski, B.; Bo, G. D.; Ward, J. W.; Papmeyer, M.; Kuschel, S.; Aldegunde, M. J.; Gramlich, P. M. E.; Heckmann, D.; Goldup, S. M.; D’Souza, D. M.; Fernandes, A. E.; Leigh, D. A. Sequence-Specific Peptide Synthesis by an Artificial Small-Molecule Machine.Science2013,339, 189−193..
Batra, R.; Song, L.; Ramprasad, R. Emerging materials intelligence ecosystems propelled by machine learning.Nat. Rev. Mater.2021,6, 655−678..
Szymanski, N. J. ; Rendy, B.; Fei, Y. et al. An autonomous laboratory for the accelerated synthesis of novel materials.Nature2023,624, 86−91..
Fish, J.; Wagner, G. J.; Keten, S. Mesoscopic and multiscale modelling in materials.Nat. Mater.2021,20, 774−786..
Sutton, C.; Boley, M.; Ghiringhelli, L. M.; Rupp, M.; Vreeken, J.; Scheffler, M. Identifying domains of applicability of machine learning models for materials science.Nat. Commun.2020,11, 4428..
Louie, S. G.; Chan, Y.-H.; da Jornada, F. H.; Li, Z.; Qiu, D. Y. Discovering and understanding materials through computation.Nat. Mater.2021,20, 728−735..
Pyzer-Knapp, E. O.; Pitera, J. W.; Staar, P. W. J.; Takeda, S.; Laino, T.; Sanders, D. P.; Sexton, J.; Smith, J. R.; Curioni, A. Accelerating materials discovery using artificial intelligence, high performance computing and robotics.NPJ Comput. Mater.2022,8, 84..
Audus, D. J.; de Pablo, J. J. Polymer Informatics: Opportunities and Challenges.ACS Macro Letters2017,6, 1078−1082..
Wang, R.; Zhu, Y.; Fu, J.; Yang, M.; Ran, Z.; Li, J.; Li, M.; Hu, J.; He, J.; Li, Q. Designing tailored combinations of structural units in polymer dielectrics for high-temperature capacitive energy storage.Nat. Commun.2023,14, 2406..
Queen, O.; McCarver, G. A.; Thatigotla, S.; Abolins, B. P.; Brown, C. L.; Maroulas, V.; Vogiatzis, K. D. Polymer graph neural networks for multitask property learning.npj Comput. Mater.2023,9, 90..
Friederich, P.; Häse, F.; Proppe, J.; Aspuru-Guzik, A. Machine-learned potentials for next-generation matter simulations.Nat. Mater.2021,20, 750−761..
Noé, F.; Tkatchenko, A.; Müller, K.-R.; Clementi, C. Machine Learning for Molecular Simulation.Annu. Rev. Phys. Chem.2020,71, 361−390..
Unke, O. T.; Chmiela, S.; Sauceda, H. E.; Gastegger, M.; Poltavsky, I.; Schütt, K. T.; Tkatchenko, A.; Müller, K.-R. Machine Learning Force Fields.Chem. Rev.2021,121, 10142−10186..
Sun, Y.; Wan, K.; Shen, W.; He, J.; Zhou, T.; Wang, H.; Yang, H.; Shi, X. Modeling Exchange Reactions in Covalent Adaptable Networks with Machine Learning Force Fields.Macromolecules2023,56, 9003−9013..
Hu, J.; Zhou, L.; Jiang, J. Efficient Machine Learning Force Field for Large-Scale Molecular Simulations of Organic Systems.CCS Chem. 2024 , Just Accepted. DOI: 10.31635/ccschem.024.202404785..
Webb, M. A.; Delannoy, J.-Y.; de Pablo, J. J. Graph-Based Approach to Systematic Molecular Coarse-Graining.J. Chem. Theory Comput.2019,15, 1199−1208..
Gartner, T. E. I.; Jayaraman, A. Modeling and Simulations of Polymers: A Roadmap.Macromolecules2019,52, 755−786..
Noid, W. G. Perspective: Advances, Challenges, and Insight for Predictive Coarse- Grained Models.J. Phys. Chem. B2023,127, 4174−4207..
Noid, W. G. Perspective: Coarse-grained models for biomolecular systems.J. Chem. Phys.2013,139, 090901..
Wang, J.; Olsson, S.; Wehmeyer, C.; Pérez, A.; Charron, N. E.; de Fabritiis, G.; Noé, F.; Clementi, C. Machine Learning of Coarse-Grained Molecular Dynamics Force Fields.ACS Cent. Sci.2019,5, 755−767..
Jin, J.; Pak, A. J.; Durumeric, A. E. P.; Loose, T. D.; Voth, G. A. Bottom-up Coarse- Graining: Principles and Perspectives.J. Chem. Theory Comput.2022,18, 5759−5791..
Potter, T. D.; Tasche, J.; Wilson, M. R. Assessing thetransferability of common top- down and bottom-up coarse-grained molecular models for molecular mixtures.Phys. Chem. Chem. Phys.2019,21, 1912−1927..
Avendaño, C.; Lafitte, T.; Adjiman, C. S.; Galindo, A.; Müller, E. A.; Jackson, G. SAFT-γForce Field for the Simulation of Molecular Fluids: 2. Coarse-Grained Models of Greenhouse Gases, Refrigerants, and Long Alkanes.J. Phys. Chem. B2013,117, 2717−2733..
Müller, E. A.; Jackson, G. Force-Field Parameters from the SAFT-γEquation of State for Use in Coarse-Grained Molecular Simulations.Annu. Rev. Chem. Biomol. Eng.2014,5, 405−427..
Dunn, N. J. H.; Lebold, K. M.; DeLyser, M. R.; Rudzinski, J. F.; Noid, W. BOCS: Bottom-up Open-source Coarse-graining Software.J. Phys. Chem. B2018,122, 3363−3377..
Sherck, N.; Shen, K.; Nguyen, M.; Yoo, B.; Köhler, S.; Speros, J. C.; Delaney, K. T.; Shell, M. S.; Fredrickson, G. H. Molecularly Informed Field Theories from Bottom-up Coarse-Graining.ACS Macro Letters2021,10, 576−583..
Liang, H.; Yoshimoto, K.; Gil, P.; Kitabata, M.; Yamamoto, U.; de Pablo, J. J. Bottom-Up Multiscale Approach to Estimate Viscoelastic Properties of Entangled Polymer Melts with High Glass Transition Temperature.Macromolecules2022,55, 3159−3165..
Hömberg, M.; Müller, M. Main phase transition in lipid bilayers: Phase coexistence and line tension in a soft, solvent-free, coarse-grained model.J. Chem. Phys.2010,132, 155104..
Detcheverry, F. A.; Pike, D. Q.; Nagpal, U.; Nealey, P. F.; de Pablo, J. J. Theoretically informed coarse grain simulations of block copolymer melts: method and applications.Soft Matter2009,5, 4858−4865..
Marrink, S. J.; de Vries, A. H.; Mark, A. E. Coarse Grained Model for Semiquantitative Lipid Simulations.J. Phys. Chem. B2004,108, 750−760..
Marrink, S. J.; Risselada, H. J.; Yefimov, S.; Tieleman, D. P.; de Vries, A. H. The MARTINI Force Field: Coarse Grained Model for Biomolecular Simulations.J. Phys. Chem. B2007,111, 7812−7824..
de Jong, D. H.; Singh, G.; Bennett, W. F. D.; Arnarez, C.; Wassenaar, T. A.; Schäfer, L. V.; Periole, X.; Tieleman, D. P.; Marrink, S. J. Improved Parameters for the Martini Coarse-Grained Protein Force Field.J. Chem. Theory Comput.2013,9, 687−697..
Marrink, S. J.; Tieleman, D. P. Perspective on the Martini model.Chem. Soc. Rev.2013,42, 6801−6822..
Patra, T. K. Data-Driven Methods for Accelerating Polymer Design.ACS Polymers Au2022,2, 8−26..
Patel, R. A.; Webb, M. A. Data-Driven Design of Polymer-Based Biomaterials: High- throughput Simulation, Experimentation, and Machine Learning.ACS Appl. Bio Mater. 2023 ,.
Martin, T. B.; Audus, D. J. Emerging Trends in Machine Learning: A Polymer Perspective.ACS Polymers Au2023,3, 239−258..
Tao, L.; Varshney, V.; Li, Y. Benchmarking Machine Learning Models for Polymer Informatics: An Example of Glass Transition Temperature.J. Chem. Inf. Model.2021,61, 5395−5413..
Xu, P.; Chen, H.; Li, M.; Lu, W. New Opportunity: Machine Learning for Polymer Materials Design and Discovery.Adv. Theory Simul.2022,5, 2100565..
Webb, M. A.; Jackson, N. E.; Gil, P. S.; de Pablo, J. J. Targeted sequence design within the coarse-grained polymer genome.Sci. Adv.2020,6, eabc6216..
Sidky, H. et al. SSAGES: Software Suite for Advanced General Ensemble Simulations.J. Chem. Phys.2018,148, 044104..
Shi, J.; Albreiki, F.; Colón, Y. J.; Srivastava, S.; Whitmer, J. K. Transfer Learning Facilitates the Prediction of Polymer–Surface Adhesion Strength.J. Chem. Theory Comput.2023,19, 4631−4640..
Zhu, J.; Jiang, L. Liquid–Liquid Phase Separation Bridges Physics, Chemistry, and Biology.Langmuir2022,38, 9043−9049..
Tong, X.; Tang, R.; Xu, J.; Wang, W.; Zhao, Y.; Yu, X.; Shi, S. Liquid–liquid phase separation in tumor biology.Signal Transduct. Target Ther.2022,7, 221..
Timilsena, Y. P.; Akanbi, T. O.; Khalid, N.; Adhikari, B.; Barrow, C. J. Complex coacervation: Principles, mechanisms and applications in microencapsulation.Int. J. Biol. Macromol.2019,121, 1276−1286..
Sing, C. E.; Perry, S. L. Recent progress in the science of complex coacervation.Soft Matter2020,16, 2885−2914..
Jong, H.; Kruyt, H. Coacervation (partial miscibility in colloid systems).Proc. K. Ned. Akad. Wet.1929,32, 849−856..
Overbeek, J. T. G.; Voorn, M. J. Phase separation in polyelectrolyte solutions. Theory of complex coacervation.J. Cell. Comp. Physiol.1957,49, 7−26..
Michaeli, I.; Overbeek, J. T. G.; Voorn, M. J. Phase separation of polyelectrolyte solutions.J. Polym. Sci.1957,23, 443−450..
Chen, S.; Wang, Z.-G. Driving force and pathway in polyelectrolyte complex coacervation.Proc. Natl. Acad. Sci. U.S.A.2022,119, e2209975119..
Fu, J.; Schlenoff, J. B. Driving Forces for Oppositely Charged Polyion Association in Aqueous Solutions: Enthalpic, Entropic, but Not Electrostatic.J. Am. Chem. Soc.2016,138, 980−990..
Priftis, D.; Megley, K.; Laugel, N.; Tirrell, M. Complex coacervation of poly(ethylene- imine)/polypeptide aqueous solutions: Thermodynamic and rheological characterization.J. Colloid Interface Sci.2013,398, 39−50..
Priftis, D.; Laugel, N.; Tirrell, M. Thermodynamic Characterization of Polypeptide Complex Coacervation.Langmuir2012,28, 15947−15957..
Zhang, P.; Alsaifi, N. M.; Wu, J.; Wang, Z.-G. Salting-Out and Salting-In of Polyelectrolyte Solutions: A Liquid-State Theory Study.Macromolecules2016,49, 9720−9730..
Zhang, P.; Wang, Z.-G. Interfacial Structure and Tension of Polyelectrolyte Complex Coacervates.Macromolecules2021,54, 10994−11007..
Zhang, P.; Alsaifi, N. M.; Wu, J.; Wang, Z.-G. Polyelectrolyte complex coacervation: Effects of concentration asymmetry.J. Chem. Phys.2018,149, 163303..
Friedowitz, S.; Salehi, A.; Larson, R. G.; Qin, J. Role of electrostatic correlations in polyelectrolyte charge association.J. Chem. Phys.2018,149, 163335..
Lou, J.; Friedowitz, S.; Qin, J.; Xia, Y. Tunable Coacervation of Well-Defined Homologous Polyanions and Polycations by Local Polarity.ACS Cent. Sci.2019,5, 549−557..
Sing, C. E. Development of the modern theory of polymeric complex coacervation.Adv. Colloid Interface Sci.2017,239, 2−16..
Veis, A. A review of the early development of the thermodynamics of the complex coacervation phase separation.Adv. Colloid Interface Sci.2011,167, 2−11..
Borue, V. Y.; Erukhimovich, I. Y. A statistical theory of weakly charged polyelectrolytes: fluctuations, equation of state and microphase separation.Macromolecules1988,21, 3240−3249..
Borue, V. Y.; Erukhimovich, I. Y. A statistical theory of globular polyelectrolyte complexes.Macromolecules1990,23, 3625−3632..
Mahdi, K. A.; Olvera de la Cruz, M. Phase Diagrams of Salt-Free Polyelectrolyte Semidilute Solutions.Macromolecules2000,33, 7649−7654..
Lin, Y.-H.; Forman-Kay, J. D.; Chan, H. S. Sequence-Specific Polyampholyte Phase Separation in Membraneless Organelles.Phys. Rev. Lett.2016,117, 178101..
Lin, Y.-H.; Song, J.; Forman-Kay, J. D.; Chan, H. S. Random-phase-approximation theory for sequence-dependent, biologically functional liquid-liquid phase separation of intrinsically disordered proteins.J. Mol. Liq.2017,228, 176−193..
Ghasemi, M.; Friedowitz, S.; Larson, R. G. Analysis of Partitioning of Salt through Doping of Polyelectrolyte Complex Coacervates.Macromolecules2020,53, 6928−6945..
Yethiraj, A.; Shew, C.-Y. Structure of Polyelectrolyte Solutions.Phys. Rev. Lett.1996,77, 3937−3940..
Yethiraj, A. Theory for chain conformations and static structure of dilute and semidilute polyelectrolyte solutions.J. Chem. Phys.1998,108, 1184−1192..
Yethiraj, A. Liquid State Theory of Polyelectrolyte Solutions.J. Phys. Chem. B2009,113, 1539−1551..
Shusharina, N. P.; Zhulina, E. B.; Dobrynin, A. V.; Rubinstein, M. Scaling Theory of Diblock Polyampholyte Solutions.Macromolecules2005,38, 8870−8881..
Wang, Z.; Rubinstein, M. Regimes of Conformational Transitions of a Diblock Polyampholyte.Macromolecules2006,39, 5897−5912..
Rumyantsev, A. M.; Zhulina, E. B.; Borisov, O. V. Scaling Theory of Complex Coacervate Core Micelles.ACS Macro Letters2018,7, 811−816..
Rumyantsev, A. M.; de Pablo, J. J. Liquid Crystalline and Isotropic Coacervates of Semiflexible Polyanions and Flexible Polycations.Macromolecules2019,52, 5140−5156..
Rumyantsev, A. M.; Zhulina, E. B.; Borisov, O. V. Complex Coacervate of Weakly Charged Polyelectrolytes: Diagram of States.Macromolecules2018,51, 3788−3801..
Lytle, T. K.; Salazar, A. J.; Sing, C. E. Interfacial properties of polymeric complex coacervates from simulation and theory.J. Chem. Phys.2018,149, 163315..
Sing, C. E. Micro- to macro-phase separation transition in sequence-defined coacervates.J. Chem. Phys.2020,152, 024902..
Spruijt, E.; Sprakel, J.; Cohen Stuart, M. A.; van der Gucht, J. Interfacial tension between a complex coacervate phase and its coexisting aqueous phase.Soft Matter2010,6, 172−178..
Ali, S.; Prabhu, V. M. Characterization of the Ultralow Interfacial Tension in Liquid–Liquid Phase Separated Polyelectrolyte Complex Coacervates by the Deformed Drop Retraction Method.Macromolecules2019,52, 7495−7502..
Priftis, D.; Farina, R.; Tirrell, M. Interfacial Energy of Polypeptide Complex Coacervates MeasuredviaCapillary Adhesion.Langmuir2012,28, 8721−8729..
Qin, J.; Priftis, D.; Farina, R.; Perry, S. L.; Leon, L.; Whitmer, J.; Hoffmann, K.; Tirrell, M.; de Pablo, J. J. Interfacial Tension of Polyelectrolyte Complex Coacervate Phases.ACS Macro Lett.2014,3, 565−568..
Riggleman, R. A.; Kumar, R.; Fredrickson, G. H. Investigation of the interfacial tension of complex coacervates using field-theoretic simulations.J. Chem. Phys.2012,136, 024903..
Wang, Q.; Schlenoff, J. B. The Polyelectrolyte Complex/Coacervate Continuum.Macromolecules2014,47, 3108−3116..
Fu, J.; Fares, H. M.; Schlenoff, J. B. Ion-Pairing Strength in Polyelectrolyte Complexes.Macromolecules2017,50, 1066−1074..
Ghostine, R. A.; Shamoun, R. F.; Schlenoff, J. B. Doping and Diffusion in an Extruded Saloplastic Polyelectrolyte Complex.Macromolecules2013,46, 4089−4094..
Schlenoff, J. B.; Yang, M.; Digby, Z. A.; Wang, Q. Ion Content of Polyelectrolyte Complex Coacervates and the Donnan Equilibrium.Macromolecules2019,52, 9149−9159..
Zhang, F.; Skoda, M. W. A.; Jacobs, R. M. J.; Zorn, S.; Martin, R. A.; Martin, C. M.; Clark, G. F.; Weggler, S.; Hildebrandt, A.; Kohlbacher, O.; Schreiber, F. Reentrant Condensation of Proteins in Solution Induced by Multivalent Counterions.Phys. Rev. Lett.2008,101, 148101..
Nguyen, T. T.; Rouzina, I.; Shklovskii, B. I. Reentrant condensation of DNA induced by multivalent counterions.J. Chem. Phys.2000,112, 2562−2568..
de la Cruz, M. O.; Belloni, L.; Delsanti, M.; Dalbiez, J. P.; Spalla, O.; Drifford, M. Precipitation of highly charged polyelectrolyte solutions in the presence of multivalent salts.J. Chem. Phys.1995,103, 5781−5791..
Lee, C.-L.; Muthukumar, M. Phase behavior of polyelectrolyte solutions with salt.J. Chem. Phys.2009,130, 024904..
Hsiao, P.-Y.; Luijten, E. Salt-Induced Collapse and Reexpansion of Highly Charged Flexible Polyelectrolytes.Phys. Rev. Lett.2006,97, 148301..
Oskolkov, N. N.; Potemkin, I. I. Complexation in Asymmetric Solutions of Oppositely Charged Polyelectrolytes: Phase Diagram.Macromolecules2007,40, 8423−8429..
Wang, F.; Xu, X.; Zhao, S. Complex Coacervation in Asymmetric Solutions of Polycation and Polyanion.Langmuir2019,35, 15267−15274..
Lin, Y.-H.; Chan, H. S. Phase Separation and Single-Chain Compactness of Charged Disordered Proteins Are Strongly Correlated.Biophys. J.2017,112, 2043−2046..
Das, R. K.; Pappu, R. V. Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues.Proc. Natl. Acad. Sci. U.S.A.2013,110, 13392−13397..
Das, S.; Amin, A. N.; Lin, Y.-H.; Chan, H. S. Coarse-grained residue-based models of disordered protein condensates: utility and limitations of simple charge pattern parameters.Phys. Chem. Chem. Phys.2018,20, 28558−28574..
Dignon, G. L.; Zheng, W.; Best, R. B.; Kim, Y. C.; Mittal, J. Relation between single- molecule properties and phase behavior of intrinsically disordered proteins.Proc. Natl. Acad. Sci. U.S.A.2018,115, 9929−9934..
Zhou, H.-X.; Pang, X. Electrostatic Interactions in Protein Structure, Folding, Binding, and Condensation.Chem. Rev.2018,118, 1691−1741..
Martin, E. W.; Mittag, T. Relationship of Sequence and Phase Separation in Protein Low-Complexity Regions.Biochemistry2018,57, 2478−2487..
Wang, J.; Choi, J.-M.; Holehouse, A. S.; Lee, H. O.; Zhang, X.; Jahnel, M.; Maharana, S.; Lemaitre, R.; Pozniakovsky, A.; Drechsel, D.; Poser, I.; Pappu, R. V.; Alberti, S.; Hyman, A. A. A Molecular Grammar Governing the Driving Forces for Phase Separation of Prion-like RNA Binding Proteins.Cell2018,174, 688−699..
Pak, C. W.; Kosno, M.; Holehouse, A. S.; Padrick, S. B.; Mittal, A.; Ali, R.; Yunus, A. A.; Liu, D. R.; Pappu, R. V.; Rosen, M. K. Sequence Determinants of Intracellular Phase Separation by Complex Coacervation of a Disordered Protein.Mol. Cell2016,63, 72−85..
Lin, Y.-H.; Wessén, J.; Pal, T.; Das, S.; Chan, H. S. InPhase-Separated Biomolecular Condensates: Methods and Protocols, Vol. 2563, ed. by Zhou, H.-X., Spille, J.-H., Banerjee, P. R., Springer US: New York, NY, 2023 , p. 51–94..
Lemmers, M.; Voets, I. K.; Cohen Stuart, M. A.; der Gucht, J. v. Transient network topology of interconnected polyelectrolyte complex micelles.Soft Matter2011,7, 1378−1389..
Lemmers, M.; Spruijt, E.; Beun, L.; Fokkink, R.; Leermakers, F.; Portale, G.; Cohen Stuart, M. A.; van der Gucht, J. The influence of charge ratio on transient networks of polyelectrolyte complex micelles.Soft Matter2012,8, 104−117..
Chen, X.; Chen, E.-Q.; Yang, S. Multiphase Coacervation of Polyelectrolytes Driven by Asymmetry of Charged Sequence.Macromolecules2023,56, 3−14..
Rumyantsev, A. M.; Johner, A. Salt-Added Solutions of Markov Polyampholytes: Diagram of States, Antipolyelectrolyte Effect, and Self-Coacervate Dynamics.Macromolecules2023,56, 5201−5216..
Perry, S. L. Phase separation: Bridging polymer physics and biology.Curr. Opin. Colloid Interface Sci.2019,39, 86−97..
DeStefano, A. J.; Segalman, R. A.; Davidson, E. C. Where Biology and Traditional Polymers Meet: The Potential of Associating Sequence-Defined Polymers for Materials Science.JACS Au2021,1, 1556−1571..
Rabiee, A.; Ershad-Langroudi, A.; Jamshidi, H. Polyacrylamide-based polyampholytes and their applications.Rev. Chem. Eng.2014,30, 501−519..
Margossian, K. O.; Brown, M. U.; Emrick, T.; Muthukumar, M. Coacervation in polyzwitterion-polyelectrolyte systems and their potential applications for gastrointestinal drug delivery platforms.Nat. Commun.2022,13, 2250..
Ming, X.; Sheng, Y.; Yao, L.; Li, X.; Huang, Y.; Zhu, H.; Zhang, Q.; Zhu, S. Anti- swelling conductive polyampholyte hydrogels via ionic complexations for underwater motion sensors and dynamic information storage.Chem. Eng. J.2023,463, 142439..
Lin, K.; Jing, B.; Zhu, Y. pH-Dependent complexation and polyelectrolyte chain conformation of polyzwitterion–polycation coacervates in salted water.Soft Matter 2021 ,17, 8937–8949..
Bossard, F.; Sfika, V.; Tsitsilianis, C. Rheological Properties of Physical Gel Formed by Triblock Polyampholyte in Salt-Free Aqueous Solutions.Macromolecules2004,37, 3899−3904..
Dyakonova, M. A.; Stavrouli, N.; Popescu, M. T.; Kyriakos, K.; Grillo, I.; Philipp, M.; Jaksch, S.; Tsitsilianis, C.; Papadakis, C. M. Physical Hydrogels via Charge Driven Self-Organization of a Triblock Polyampholyte-Rheological and Structural Investigations.Macromolecules2014,47, 7561−7572..
Charbonneau, C.; Chassenieux, C.; Colombani, O.; Nicolai, T. Slow dynamics in transient polyelectrolyte hydrogels formed by self-assembly of block copolymers.Phys. Rev. E2013,87, 062302..
Lemmers, M.; Sprakel, J.; Voets, I. K.; van der Gucht, J.; Cohen Stuart, M. A. Multiresponsive Reversible Gels Based on Charge-Driven Assembly.Angew. Chem. Int. Ed.2010,49, 708−711..
Madsen J., Armes S. P. (Meth)acrylic stimulus-responsive block copolymer hydrogels.Soft Matter 2012 ,8, 592–605..
Tsitsilianis, C. InHydrogels: Recent Advances; ed. by Thakur, V. K., Thakur, M. K., Springer Singapore: Singapore, 2018 , p. 259–295..
Zhang, R.; Shi, T.; An, L.; Huang, Q. Salt Effects on Sol–Gel Transition of Telechelic Polyelectrolytes in Aqueous Solutions.Macromolecules2012,45, 555−562..
Shusharina, N. P.; Rubinstein, M. InNanostructured Soft Matter: Experiment, Theory, Simulation and Perspectives; Zvelindovsky, A. V., Ed.; Springer Netherlands: Dordrecht, 2007; pp 301–326.
Gohy, J.-F.; Creutz, S.; Garcia, M.; Mahltig, B.; Stamm, M.; Jérôme, R. Aggregates Formed by Amphoteric Diblock Copolymers in Water.Macromolecules2000,33, 6378−6387..
Goloub, T.; de Keizer, A.; Cohen Stuart, M. A. Association Behavior of Ampholytic Diblock Copolymers.Macromolecules1999,32, 8441−8446..
Lytle, T. K.; Chang, L.-W.; Markiewicz, N.; Perry, S. L.; Sing, C. E. Designing Electrostatic Interactions via Polyelectrolyte Monomer Sequence.ACS Cent. Sci.2019,5, 709−718..
Antila, H. S.; Luijten, E. Dielectric Modulation of Ion Transport near Interfaces.Phys. Rev. Lett.2018,120, 135501..
Yuan, J.; Antila, H. S.; Luijten, E. Dielectric Effects onIon Transport in Polyelectrolyte Brushes.ACS Macro Letters2019,8, 183−187..
Zhang, B.; Ai, Y.; Liu, J.; Joo, S. W.; Qian, S. Polarization Effect of a Dielectric Membrane on the Ionic Current Rectification in a Conical Nanopore.J. Phys. Chem. C2011,115, 24951−24959..
Barros, K.; Luijten, E. Dielectric Effects in the Self-Assembly of Binary Colloidal Aggregates.Phys. Rev. Lett.2014,113, 017801..
dos Santos, A. P.; Girotto, M.; Levin, Y. Simulations of Polyelectrolyte Adsorption to a Dielectric Like-Charged Surface.J. Phys. Chem. B2016,120, 10387−10393..
Messina, R. Effect of image forces on polyelectrolyte adsorption at a charged surface.Phys. Rev. E2004,70, 051802..
Jiménez-Ángeles, F.; Kwon, H.-K.; Sadman, K.; Wu, T.; Shull, K. R.; Olverade la Cruz, M. Self-Assembly of Charge-Containing Copolymers at the Liquid–Liquid Interface.ACS Cent. Sci.2019,5, 688−699..
Curk, T.; Luijten, E. Charge Regulation Effects in Nanoparticle Self-Assembly.Phys. Rev. Lett.2021,126, 138003..
Wang, R.; Wang, Z.-G. Effects of image charges on double layer structure and forces.J. Chem. Phys.2013,139, 124702..
Bagchi, D.; Olvera de la Cruz, M. Dynamics of a driven confined polyelectrolyte solution.J. Chem. Phys.2020,153, 184904..
Tyagi, S.; Arnold, A.; Holm, C. ICMMM2D: An accurate method to include planar dielectric interfaces via image charge summation.J. Chem. Phys.2007,127, 154723..
Arnold, A.; de Joannis, J.; Holm, C. Electrostatics in periodic slab geometries. I.J. Chem. Phys.2002,117, 2496−2502..
Tyagi, S.; Arnold, A.; Holm, C. Electrostatic layer correction with image charges: A linear scaling method to treat slab 2D+h systems with dielectric interfaces.J. Chem. Phys.2008,129, 204102..
dos Santos, A. P.; Levin, Y. Electrolytes between dielectric charged surfaces: Simulations and theory.J. Chem. Phys.2015,142, 194104..
Girotto, M.; dos Santos, A. P.; Levin, Y. Simulations of ionic liquids confined by metal electrodes using periodic Green functions.J. Chem. Phys.2017,147, 074109..
Liang, J.; Yuan, J.; Luijten, E.; Xu, Z. Harmonic surface mapping algorithm for molecular dynamics simulations of particle systems with planar dielectric interfaces.J. Chem. Phys.2020,152, 134109..
Wu, H.; Luijten, E. Accurate and efficient numerical simulation of dielectrically anisotropic particles.J. Chem. Phys.2018,149, 134105..
Barros, K.; Sinkovits, D.; Luijten, E. Efficient and accurate simulation of dynamic dielectric objects.J. Chem. Phys.2014,140, 064903..
Jadhao, V.; Solis, F. J.; de la Cruz, M. O. Simulation of Charged Systems in Heterogeneous Dielectric Media via a True Energy Functional.Phys. Rev. Lett.2012,109, 223905..
Jadhao, V.; Solis, F. J.; Olvera de la Cruz, M. A variational formulation of electrostatics in a medium with spatially varying dielectric permittivity.J. Chem. Phys.2013,138, 054119..
Nguyen, T. D.; Li, H.; Bagchi, D.; Solis, F. J.; Olvera de la Cruz, M. Incorporating surface polarization effects into large-scale coarse-grained Molecular Dynamics simulation.Comput. Phys. Commun.2019,241, 80−91..
Nguyen, T. D.; Olvera de la Cruz, M. Manipulation of Confined Polyelectrolyte Conformations through Dielectric Mismatch.ACS Nano2019,13, 9298−9305..
Maggs, A. C.; Rossetto, V. Local Simulation Algorithms for Coulomb Interactions.Phys. Rev. Lett.2002,88, 196402..
Rottler, J.; Maggs, A. C. A continuum, O(N) Monte Carlo algorithm for charged particles.J. Chem. Phys.2004,120, 3119−3129..
Levrel, L.; Maggs, A. C. Monte Carlo algorithms for charged lattice gases.Phys. Rev. E2005,72, 016715..
Jiang, J.; Wang, Z.-G. Improved local lattice Monte Carlo simulation for charged systems.J. Chem. Phys.2018,148, 114105..
Wang, R.; Ginzburg, V. V.; Jiang, J.; Wang, Z.-G. Adsorption of a Polyelectrolyte Chain at Dielectric Surfaces: Effects of Surface Charge Distribution and Relative Dielectric Permittivity.Macromolecules2023,56, 7653−7662..
Yuan, J.; Antila, H. S.; Luijten, E. Structure of Polyelectrolyte Brushes on Polarizable Substrates.Macromolecules2020,53, 2983−2990..
Liang, J.; Yuan, J.; Xu, Z. HSMA: An O(N) electrostatics package implemented in LAMMPS.Comput. Phys. Commun.2022,276, 108332..
Lee, A. A.; Kostinski, S. V.; Brenner, M. P. Controlling Polyelectrolyte Adsorption onto Carbon Nanotubes by Tuning Ion–Image Interactions.J. Phys. Chem. B2018,122, 1545−1550..
Norris, W. Charge images in a dielectric sphere.IEE Proceedings - Science, Measurement and Technology1995,142, 142−150..
Gan, Z.; Xu, Z. Multiple-image treatment of induced charges in Monte Carlo simulations of electrolytes near a spherical dielectric interface.Phys. Rev. E2011,84, 016705..
Tergolina, V. B.; dos Santos, A. P. Effect of dielectric discontinuity on a spherical polyelectrolyte brush.J. Chem. Phys.2017,147, 114103..
Telles, I. M.; Arfan, M.; dos Santos, A. P. Effects of electrostatic coupling and surface polarization on polyelectrolyte brush structure.J. Chem. Phys.2023,158, 144902..
Bradford, S. A.; Torkzaban, S. Colloid Interaction Energies for Physically and Chemically Heterogeneous Porous Media.Langmuir2013,29, 3668−3676..
Richard Bowen, W.; Doneva, T. A. Atomic Force Microscopy Studies of Membranes: Effect of Surface Roughness on Double-Layer Interactions and Particle Adhesion.J. Colloid Interface Sci.2000,229, 544−549..
Bhattacharjee, S.; Ko, C.-H.; Elimelech, M. DLVO Interaction between Rough Surfaces.Langmuir1998,14, 3365−3375..
Yuan, J.; Antila, H. S.; Luijten, E. Particle–particle particle–mesh algorithm for electrolytes between charged dielectric interfaces.J. Chem. Phys.2021,154, 094115..
Tyagi, S.; Süzen, M.; Sega, M.; Barbosa, M.; Kantorovich, S. S.; Holm, C. An iterative, fast, linear-scaling method for computing induced charges on arbitrary dielectric boundaries.J. Chem. Phys.2010,132, 154112..
Bagchi, D.; Nguyen, T. D.; Olvera de la Cruz, M. Surface polarization effects in confined polyelectrolyte solutions.Proc. Natl. Acad. Sci. U.S.A.2020,117, 19677−19684..
Perram, J. W.; Petersen, H. G.; Leeuw, S. W. D. An algorithm for the simulation of condensed matter which grows as the 3/2 power of the number of particles.Mol. Phys.1988,65, 875−893..
Tornberg, A.-K. The Ewald sums for singly, doubly and triply periodic electrostatic systems.Adv. Comput. Math.2016,42, 227−248..
Beckers, J. V. L.; Lowe, C. P.; Leeuw, S. W. D. An Iterative PPPM Method for Simulating Coulombic Systems on Distributed Memory Parallel Computers.Mol. Simul.1998,20, 369−383..
Son, C. Y.; Wang, Z.-G. Image-charge effects on ion adsorption near aqueous interfaces.Proc. Natl. Acad. Sci. U.S.A.2021,118, e2020615118..
Shin, M.; Shin, J. Y.; Kim, K.; Yang, B. The position of lysine controls the catechol- mediated surface adhesion and cohesion in underwater mussel adhesion.J. Colloid Interface Sci.2020,563, 168−176..
Ou, X.; Xue, B.; Lao, Y.; Wutthinitikornkit, Y. Structure and sequence features of mussel adhesive protein lead to its salt-tolerant adhesion ability.Sci. Adv.2020,6, abb7620..
Li, Y.; Cheng, J.; Delparastan, P.; Wang, H.; Sigg, S. J.; DeFrates, K. G.; Cao, Y.; Messersmith, P. B. Molecular design principles of Lysine-DOPA wet adhesion.Nat. Commun.2020,11, 3895..
Fischer, L.; Strzelczyk, A. K.; Wedler, N. Sequence-defined positioning of amine and amide residues to control catechol driven wet adhesion.Chem. Sci.2020,11, 9919−9924..
Fan, H. L.; Wang, J. H.; Tao, Z.; Huang, J. C.; Rao, P.; Kurokawa, T.; Gong, J. P. Adjacent cationic-aromatic sequences yield strong electrostatic adhesion of hydrogels in seawater.Nat. Commun.2019,10, 5127..
Li, Y.; Liang, C.; Gao, L.; Li, S.; Zhang, Y.; Zhang, J.; Cao, Y. Hidden complexity of synergistic roles of Dopa and lysine for strong wet adhesion.Mater. Chem. Front.2017,1, 2664−2668..
Degen, G. D.; Stow, P. R.; Lewis, R. B. Impact of Molecular Architecture and Adsorption Density on Adhesion of Mussel-Inspired Surface Primers with Catechol-Cation Synergy.J. Am. Chem. Soc.2019,141, 18673−18681..
Zhang, C.; Xiang, L.; Zhang, J.; Gong, L. Tough and Alkaline-Resistant Mussel- Inspired Wet Adhesion with Surface Salt Displacement via Polydopamine/Amine Synergy.Langmuir2019,35, 5257−5263..
Anand, P. P.; Vardhanan, Y. S. Computational modelling of wet adhesive mussel foot proteins (Bivalvia): Insights into the evolutionary convolution in diverse perspectives.Sci. Rep.2020,10, 2612..
Morando, M. A.; Venturella, F.; Sollazzo, M.; Monaca, E.; Sabbatella, R.; Vetri, V.; Passantino, R.; Pastore, A.; Alfano, C. Solution structure of recombinant Pvfp-5βreveals insights into mussel adhesion.Commun. Biol.2022,5, 739..
Bilotto, P.; Labate, C.; De Santo, M. P.; Deepankumar, K.; Miserez, A.; Zappone, B. Adhesive Properties of Adsorbed Layers of Two Recombinant Mussel Foot Proteins with Different Levels of DOPA and Tyrosine.Langmuir2019,35, 15481−15490..
Woodward, C. E.; Åkesson, T.; Jönsson, B. Forces between polyelectrolyte coated surfaces in the presence of electrolyte.J. Chem. Phys.1994,101, 2569−2576..
Åkesson, T.; Woodward, C.; Jönsson, B. Electric double layer forces in the presence of polyelectrolytes.J. Chem. Phys.1989,91, 2461−2469..
Miklavic, S. J.; Woodward, C. E.; Joensson, B.; Aakesson, T. The interaction of charged surfaces with grafted polyelectrolytes: a Poisson-Boltzmann and Monte Carlo study.Macromolecules1990,23, 4149−4157..
Ennis, J.; Sjöström, L.; Åkesson, T.; Jönsson, B. Attractive Osmotic Pressure in an Electric Double Layer with Grafted Polyelectrolytes.J. Phys. Chem. B1998,102, 2149−2164..
Miklavic, S. J.; Marcelja, S. Interaction of surfaces carrying grafted polyelectrolytes.J. Phys. Chem.1988,92, 6718−6722..
Miklavic, S. J.; Woodward, C. E. The osmotic pressure in polyelectrolyte solutions: Exact and mean-field results.J. Chem. Phys.1990,93, 1369−1375..
Ennis, J.; Sjöström, L.; Åkesson, T.; Jönsson, B. Surface Interactions in the Presence of Polyelectrolytes. A Simple Theory.Langmuir2000,16, 7116−7125..
Pryamitsyn, V.; Ganesan, V. Interplay between Depletion and Electrostatic Interactions in Polyelectrolyte–Nanoparticle Systems.Macromolecules2014,47, 6095−6112..
Tong, C. The interplay of the polyelectrolyte-surface electrostatic and non-electrostatic interactions in the polyelectrolytes adsorption onto two charged objects – A self- consistent field study.J. Chem. Phys.2012,137, 104904..
Mei, D.-h.; Qiu, D. A self-consistent field study on the adsorption of symmetrical triblock copolymers between two parallel planes.Chinese J. Polym. Sci.2015,33, 1691−1701..
Mei, D.-h.; Qiu, D.; Yan, D.-d. Structure and interaction of adsorbing symmetrical triblock polyampholyte solution between two planes.Chinese J. Polym. Sci.2016,34, 195−208..
Podgornik, R. A variational approach to charged polymer chains: Polymer mediated interactions.J. Chem. Phys.1993,99, 7221−7231..
Tong, C.; Zhu, Y.; Zhang, H.; Qiu, F.; Tang, P.; Yang, Y. The Self-Consistent Field Study of the Adsorption of Flexible Polyelectrolytes onto Two Charged Nano-objects.J. Phys. Chem. B2011,115, 11307−11317..
Podgornik, R. Self-consistent-field theory for confined polyelectrolyte chains.J. Phys. Chem.1992,96, 884−896..
Huang, H.; Ruckenstein, E. The Bridging Force between Colloidal Particles in a Polyelectrolyte Solution.Langmuir2012,28, 16300−16305..
Forsman, J. Density functional theories of surface interactions in salt solutions.J. Chem. Phys.2009,130, 064901..
Balzer, C.; Jiang, J.; Marson, R. L.; Ginzburg, V. V.; Wang, Z.-G. nonelectrostatic Adsorption of Polyelectrolytes and Mediated Interactions between Solid Surfaces.Langmuir 2021 ,37, 5483–5493..
Turesson, M.; Forsman, J.; Åkesson, T. Surface Forces Mediated by Charged Polymers: Effects of Intrinsic Chain Stiffness.Langmuir2006,22, 5734−5741..
Forsman, J.; Nordholm, S. Polyelectrolyte Mediated Interactions in Colloidal Dispersions: Hierarchical Screening, Simulations, and a New Classical Density Functional Theory.Langmuir2012,28, 4069−4079..
Jönsson, B.; Broukhno, A.; Forsman, J.; Åkesson, T. Depletion and Structural Forces in Confined Polyelectrolyte Solutions.Langmuir2003,19, 9914−9922..
Goujon, F.; Malfreyt, P.; Tildesley, D. J. Dissipative Particle Dynamics Simulations in the Grand Canonical Ensemble: Applications to Polymer Brushes.ChemPhysChem2004,5, 457−464..
Goicochea, A. G.; Nahmad-Achar, E.; Pérez, E. Colloidal Stability Dependence on Polymer Adsorption through Disjoining Pressure Isotherms.Langmuir2009,25, 3529−3537..
Goicochea, A. G.; Alarcón, F. Solvation force induced by short range, exact dissipative particle dynamics effective surfaces on a simple fluid and on polymer brushes.J. Chem. Phys.2011,134, 014703..
Alarcón, F.; Pérez, E.; Gama Goicochea, A. Dissipative particle dynamics simulations of weak polyelectrolyte adsorption on charged and neutral surfaces as a function of the degree of ionization.Soft Matter2013,9, 3777−3788..
Podgornik, R.; Åkesson, T.; Jönsson, B. Colloidal interactions mediated via polyelectrolytes.J. Chem. Phys.1995,102, 9423−9434..
Granfeldt, M. K.; Miklavic, S. J.; Marcelja, S.; Woodward, C. E. Conformation of surface bound polyelectrolytes. 2. A Monte Carlo study of medium-length lattice chains.Macromolecules1990,23, 4760−4768..
Svensson, B.; Woodward, C. Simulations of a confined polymer fluid at constant chemical potential.Mol. Phys.1996,87, 1363−1373..
Turesson, M.; Woodward, C. E.; Åkesson, T.; Forsman, J. Simulations of Surface Forces in Polyelectrolyte Solutions.J. Phys. Chem. B2008,112, 5116−5125..
Turesson, M.; Åkesson, T.; Forsman, J. Interactions between Charged Surfaces Immersed in a Polyelectrolyte Solution.Langmuir2007,23, 9555−9558..
Turesson, M.; Woodward, C. E.; Åkesson, T.; Forsman, J. Simulating Equilibrium Surface Forces in Polymer Solutions Using a Canonical Grid Method.J. Phys. Chem. B2008,112, 9802−9809..
Granfeldt, M. K.; Joensson, B.; Woodward, C. E. A Monte Carlo simulation study of the interaction between charged colloids carrying adsorbed polyelectrolytes.J. Phys. Chem.1991,95, 4819−4826..
Svensson, B.; Woodward, C. E. Simulations in planar slits at constant chemical potential.J. Chem. Phys.1994,100, 4575−4581..
de Miguel, E.; Jackson, G. The nature of the calculation of the pressure in molecular simulations of continuous models from volume perturbations.J. Chem. Phys.2006,125, 164109..
Israelachvili, J. N.Intermolecular and Surface Forces (Third Edition); Academic Press: San Diego, 2011 . p. 223-252.
Hamaker, H. The London—van der Waals attraction between spherical particles.Physica1937,4, 1058−1072..
Chang, Q.; Jiang, J. Force Regulation by Sequence-Defined Polyelectrolytes.Macromolecules2023,56, 4100−4110..
González-Tovar, E.; Lozada-Cassou, M. Long-range forces and charge inversions in model charged colloidal dispersions at finite concentration.Adv. Colloid Interface Sci.2019,270, 54−72..
Zhang, J.; Zeng, H. Intermolecular and Surface Interactions in Engineering Processes.Engineering2021,7, 63−83..
Scarratt, L. R.; Trefalt, G.; Borkovec, M. Forces between interfaces in concentrated nanoparticle suspensions and polyelectrolyte solutions.Curr. Opin. Colloid Interface Sci.2021,55, 101482..
Szilagyi, I.; Trefalt, G.; Tiraferri, A.; Maroni, P.; Borkovec, M. Polyelectrolyte adsorption, interparticle forces, and colloidal aggregation.Soft Matter2014,10, 2479−2502..
Forsman, J. Surface forces in electrolytes containing polyions and oppositely charged surfaces.Curr. Opin. Colloid Interface Sci.2017,27, 57−62..
Pegado, L.; Jönsson, B.; Wennerström, H. Attractive ion–ion correlation forces and the dielectric approximation.Adv. Colloid Interface Sci.2016,232, 1−8..
Claesson, P. M.; Poptoshev, E.; Blomberg, E.; Dedinaite, A. Polyelectrolyte-mediated surface interactions.Adv. Colloid Interface Sci. 2005 ,114-115, 173–187..
Forsman, J. Polyelectrolyte mediated forces between macromolecules.Curr. Opin. Colloid Interface Sci.2006,11, 290−294..
Yethiraj, A. Forces between surfaces immersed in polyelectrolyte solutions.J. Chem. Phys.1999,111, 1797−1800..
Jiang, J.; Ginzburg, V. V.; Wang, Z.-G. On the origin of oscillatory interactions between surfaces mediated by polyelectrolyte solution.J. Chem. Phys.2019,151, 214901..
Pericet-Camara, R.; Papastavrou, G.; Behrens, S. H.; Helm, C. A.; Borkovec, M. Interaction forces and molecular adhesion between pre-adsorbed poly(ethylene imine) layers.J. Colloid Interface Sci.2006,296, 496−506..
Abraham, T.; Christendat, D.; Xu, Z.; Masliyah, J.; Gohy, J. F.; Jérôme, R. Role of polyelectrolyte charge density in tuning colloidal forces.AIChE Journal2004,50, 2613−2626..
Maurdev, G.; Meagher, L.; Ennis, J.; Gee, M. L. Surface Forces between Adsorbed Quaternarized Poly(2-vinylpyridine) Layers: Molecular Rearrangements and Bridging Interactions.Macromolecules2001,34, 4151−4158..
Bosio, V.; Dubreuil, F.; Bogdanovic, G.; Fery, A. Interactions between silica surfaces coated by polyelectrolyte multilayers in aqueous environment: comparison between precursor and multilayer regime.Colloids and Surfaces A: Physicochemical and Engineering Aspects2004,243, 147−155..
Dahlgren, M. A.; Claesson, P. M.; Audebert, R. Highly Charged Cationic Polyelectrolytes on Mica: Influence of Polyelectrolyte Concentration on Surface Forces.J. Colloid Interface Sci.1994,166, 343−349..
Dahlgren, M. A. G.; Waltermo, A.; Blomberg, E.; Claesson, P. M.; Sjoestroem, L.; Aakesson, T.; Joensson, B. Salt effects on the interaction between adsorbed cationic polyelectrolyte layers: theory and experiment.J. Phys. Chem.1993,97, 11769−11775..
Khan, M. O.; Åkesson, T.; Woodward, C. E.; Jönsson, B. Nonlinear electric response of polyampholytes.Theor. Chem. Acc.2003,110, 126−129..
Jönsson, B.; Khan, M. O.; Åkesson, T.; Woodward, C. E. Modulation of Colloidal Forces with Polyampholytes.Langmuir2002,18, 1426−1432..
Sivasundarampillai, J.; Youssef, L.; Priemel, T.; Mikulin, S.; Eren, E. D.; Zaslansky, P.; Jehle, F.; Harrington, M. J. A strong quick-release biointerface in mussels mediated by serotonergic cilia-based adhesion.Science2023,382, 829−834..
Pan, G.; Li, B. A dynamic biointerface controls mussel adhesion.Science2023,382, 763−764..
Chen, Y.; Meng, J.; Gu, Z.; Wan, X.; Jiang, L.; Wang, S. Bioinspired Multiscale Wet Adhesive Surfaces: Structures and Controlled Adhesion.Adv. Funct. Mater.2020,30, 1905287..
Narayanan, A.; Dhinojwala, A.; Joy, A. Design principles for creating synthetic underwater adhesives.Chem. Soc. Rev.2021,50, 13321−13345..
Hofman, A. H.; van Hees, I. A.; Yang, J.; Kamperman, M. Bioinspired Underwater Adhesives by Using the Supramolecular Toolbox.Adv. Mater.2018,30, 1704640..
Zhu, M.; Zhang, F.; Chen, X. Bioinspired Mechanically Interlocking Structures.Small Struct.2020,1, 2000045..
Mehdizadeh, M.; Yang, J. Design Strategies and Applications of Tissue Bioadhesives.Macromol. Biosci.2013,13, 271−288..
Duan, W.-L.; Zhang, L.-N.; Bohara, R.; Martin-Saldaña, S.; Yang, F.; Zhao, Y.-Y.; Xie, Y.; Bu, Y.-Z.; Pandit, A. Adhesive hydrogels in osteoarthritis: from design to application.Mil. Med. Res.2023,10, 4..
Chang, Q.; Jiang, J. Nanoscale Hierarchical Structures Formed by Sequence-Defined Polycations and Homopolyanions for High Salt-Tolerance Adhesives.Macromolecules2024,57, 1859−1867..
Zheng, G.; Zhang, D.; Tang, Q.; Ma, H.-W.; Dong, X.-Y.; Chen, Y.-L.; Ni, W.-F.; Wang, B.-L.; Xu, H.-Z.; Shen, L.-Y. Charge-switchable, anti-oxidative molecule tuned polyelectrolyte multilayered films: Amplified polyelectrolyte diffusivity and accelerated diabetes wound healing.Chem. Eng. J.2021,416, 129521..
Li, C.; Gu, Y.; Zacharia, N. S. Tuning Wet Adhesion of Weak Polyelectrolyte Multi- layers.ACS Appl. Mater. Interfaces2018,10, 7401−7412..
Reid, M. S.; Träger, A.; Cobo Sanchez, C.; Malmström, E.; Wågberg, L. Tunable Adhesion and Interfacial Structure of Layer-by-Layer Assembled Block co-polymer Micelle and Polyelectrolyte Coatings.Adv. Mater. Interfaces2022,9, 2200065..
Jiménez, N.; Ruipérez, F.; González de San Román, E.; Asua, J. M.; Ballard, N. Fundamental Insights into Free-Radical Polymerization in the Presence of Catechols and Catechol-Functionalized Monomers.Macromolecules2022,55, 49−64..
Krüger, J. M.; Choi, C.-Y.; Lossada, F.; Wang, P.; Löschke, O.; Auhl, D.; Börner, H. G. Broadening the Chemical Space of Mussel-Inspired Polymerization: The Roll-out of a TCC-Polymer Platform with Thiol–Catechol Connectivities.Macromolecules2022,55, 989−1002..
Ju, J.; Jin, S.; Kim, S.; Choi, J. H.; Lee, H. A.; Son, D.; Lee, H.; Shin, M. Addressing the Shortcomings of Polyphenol-Derived Adhesives: Achievement of Long Shelf Life for Effective Hemostasis.ACS Appl. Mater. Interfaces2022,14, 25115−25125..
Nam, S.; Mooney, D. Polymeric Tissue Adhesives.Chem. Rev.2021,121, 11336−11384..
Bouten, P. J.;Zonjee, M.; Bender, J.; Yauw, S. T.; van Goor, H.; van Hest, J. C.; Hoogenboom, R. The chemistry of tissue adhesive materials.Prog. Polym. Sci.2014,39, 1375−1405..
Bovone, G.; Dudaryeva, O. Y.; Marco-Dufort, B.; Tibbitt, M. W. Engineering Hydrogel Adhesion for Biomedical Applications via Chemical Design of the Junction.ACS Biomater. Sci. Eng.2021,7, 4048−4076..
Guo, J.; Suma, T.; Richardson, J. J.; Ejima, H. Modular Assembly of Biomaterials Using Polyphenols as Building Blocks.ACS Biomater. Sci. Eng.2019,5, 5578−5596..
Rapp, M. V.; Maier, G. P.; Dobbs, H. A.; Higdon, N. J.; Waite, J. H.; Butler, A.; Israelachvili, J. N. Defining the Catechol–Cation Synergy for Enhanced Wet Adhesion to Mineral Surfaces.J. Am. Chem. Soc.2016,138, 9013−9016..
Kim, M.; Park, J.; Lee, K. M.; Shin, E.; Park, S.; Lee, J.; Lim, C.; Kwak, S. K.; Lee, D. W.; Kim, B.-S. Peptidomimetic Wet-Adhesive PEGtides with Synergistic and Multimodal Hydrogen Bonding.J. Am. Chem. Soc.2022,144, 6261−6269..
Maier, G. P.; Rapp, M. V.; Waite, J. H.; Israelachvili, J. N.; Butler, A. Adaptive syn- ergy between catechol and lysine promotes wet adhesion by surface salt displacement.Science2015,349, 628−632..
0
Views
32
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution