FOLLOWUS
a.School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
b.Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
c.Insititutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
liyg@hfut.edu.cn (Y.G.L.)
chemistdrasad@gmail.com (M.A.K.)
misschen@ahu.edu.cn (M.C.)
Received:17 July 2024,
Revised:13 August 2024,
Accepted:13 August 2024,
Published Online:07 November 2024,
Published:20 May 2025
Scan QR Code
Li, W.; Cheng, S. J.; Li, Y. G.; Khan, M. A.; Chen, M. Ring-opening metathesis polymerization to access degradable imine-based polymers. Chinese J. Polym. Sci. 2025, 43, 908–913
Wu Li, Si-Jia Cheng, You-Gui Li, et al. Ring-opening Metathesis Polymerization to Access Degradable Imine-based Polymers[J]. Chinese journal of polymer science, 2025, 43(6): 908-913.
Li, W.; Cheng, S. J.; Li, Y. G.; Khan, M. A.; Chen, M. Ring-opening metathesis polymerization to access degradable imine-based polymers. Chinese J. Polym. Sci. 2025, 43, 908–913 DOI: 10.1007/s10118-024-3220-7.
Wu Li, Si-Jia Cheng, You-Gui Li, et al. Ring-opening Metathesis Polymerization to Access Degradable Imine-based Polymers[J]. Chinese journal of polymer science, 2025, 43(6): 908-913. DOI: 10.1007/s10118-024-3220-7.
Imine-based copolymers was synthesized through the copolymerization of cyclooctene with cyclic imine comonomer via ROMP
which were degraded into amine capped telechelic polymer. And this telechelic polymer could also be used for the further synthesis of new polymer after post-transformation process.
As a powerful synthetic tool
ruthenium-catalyzed ring-opening metathesis polymerization (ROMP) has been widely utilized to prepare diverse heteroatom-containing polymers. In this contribution
we report the synthesis of the novel imine-based polymer through the copolymerization of cyclooctene with cyclic imine comonomer
via
ROMP. Because of the efficient hydrolysis reactions of the imine group
the generated copolymer can be easily degraded under mild condition. Moreover
the generated degradable product was the telechelic polymer bearing amine group
which was highly challenged for its direct synthesis. And this telechelic polymer could also be used for the further synthesis of new polymer through post-transformation. The introduction of imine unit in this work provides a new example of the degradable polymer synthesis.
Siracusa, V.; Rocculi, P.; Romani, S.; Rosa, M. D. Biodegradable polymers for food packaging: a review. Trends Food Sci. Technol. 2008 , 19 , 634−643..
Schneiderman, D. K.; Hillmyer, M. A. 50 th Anniversary perspective: there is a great future in sustainable polymers. Macromolecules 2017 , 50 , 3733−3749..
Delplace, V.; Nicolas, J. Degradable vinyl polymers for biomedical applications. Nat. Chem. 2015 , 7 , 771−784..
Hillmyer, M. A.; Tolman, W. B. Aliphatic polyester block polymers: renewable, degradable, and sustainable. Acc. Chem. Res. 2014 , 47 , 2390−2396..
Semsarilar, M.; Perrier, S. ‘Green’ reversible additionfragmentation chain-transfer (RAFT) polymeriza tion. Nat. Chem . 2010 , 2 , 811−820..
Feig, V. R.; Tran, H.; Bao, Z. N. Biodegradable polymeric materials in degradable electronic devices. ACS Cent. Sci. 2018 , 4 , 337−348..
Eck, M.; Mecking, S. Closed-loop recyclable and nonpersistent polyethylene-like polyesters. Acc. Chem. Res. 2024 , 57 , 971−980..
Häußler, M.; Eck, M.; Rothauer, D.; Mecking, S. Closed-looprecycling of polyethylene-like materials. Nature 2021 , 590 , 423−427..
Saumer, A.; Mecking S. Recyclable and degradable ionic-substituted long-chain polyesters. ACS Sustainable Chem. Eng . 2023 , 11 , 12414−12422..
Tardy, A.; Nicolas, J.; Gigmes, D.; Lefay, C.; Guillaneuf, Y. Radical ring-opening polymerization: scope, limitations, and application to (bio)degradable materials. Chem. Rev. 2017 , 117 , 1319−1406..
Hill, M. R.; Kubo, T.; Goodrich, S. L.; Figg, C. A.; Sumerlin, B. S. Alternating radical ring-opening polymerization of cyclic ketene acetals: access to tunable and functional polyester copolymers. Macromolecules 2018 , 51 , 5079−5084..
Meng, X. B.; Zhou, T.; Yang, C.; Cheng, X. Y.; Wu, X. T.; Shi, C.; Du, F. S.; Li, Z. C. Thermally stable and chemically recyclable poly(ketal-ester)s regulated by floor temperature. J. Am. Chem. Soc. 2024 , 146 , 15428−15437..
Yuan, P.; Sun, Y.; Xu, X.; Luo, Y.; Hong, M. Towards high-performance sustainable polymers via isomerization-driven irreversible ring-opening polymerization of five-membered thionolactones. Nat. Chem. 2022 , 14 , 294−303..
Hong, M.; Chen, E. Y. X. Completely recyclable biopolymers with linear and cyclic topologies via ring-opening polymerization of γ -butyrolactone. Nat. Chem. 2016 , 8 , 42−49..
Xu, J.; Wang, X.; Liu, J.; Feng, X.; Gnanou, Y.; Hadjichristidis, N. Ionic H-bonding organocatalysts for the ring-opening polymerization of cyclic esters and cyclic carbonates. Prog. Polym. Sci. 2022 , 125 , 101484..
Xu, J.; Hadjichristidis, N. Heteroatom-containing degradable polymers by ring-opening metathesis polymerization. Prog. Polym. Sci. 2023 , 139 , 101656..
Lefay, C.; Guillaneuf, Y. Recyclable/degradable materials via the insertion of labile/cleavable bonds using a comonomer approach. Prog. Polym. Sci. 2023 , 147 , 101764..
Varlas, S.; Keogh, R.; Xie, Y. J.; Horswell, S. L.; Foster, J. C.; O’Reilly, R. K. Polymerization-induced polymersome fusion. J. Am. Chem. Soc. 2019 , 141 , 20234−20248..
Yang, J. X.; Ren, L. X.; Li, Y. S. Ring-opening metathesis polymerization of cis -5-norbornene-endo-2,3-dicarboxylic anhydride derivatives using the grubbs third generation catalyst. Chinese J. Polym. Sci. 2017 , 35 , 36−45..
Fu, L. B.; Zhang, T. Q.; Fu, G. Y.; Gutekunst, W. R. Relay conjugation of living metathesis polymers. J. Am. Chem. Soc. 2018 , 140 , 12181−12188..
Callmann, C. E.; Thompson, M. P.; Gianneschi, N. C. Acc. Chem. Res . 2020 , 53 , 400−413..
Zheng, S. Q.; Liu, Y.; Si, G. F.; Chen, M. Covalently crosslinked networks from telechelic polycyclooctene with reinforced properties. Chin. J. Chem. 2023 , 41 , 2002−2009..
Trnka, T. M.; Grubbs, R. H. The development of L2×2RuCHR olefin metathesis catalysts: an organometallic success story. Acc. Chem. Res. 2001 , 34 , 18−29..
Ogba, O. M.; Warner, N. C.; O’Leary, D. J.; Grubbs, R. H. Recent advances in ruthenium-based olefin metathesis. Chem. Soc. Rev. 2018 , 47 , 4510−4544..
Song, K.; Kim, K.; Hong, D.; Kim, J.; Heo, C. E.; Kim, H. I.; Hong, S. H. Highly active ruthenium metathesis catalysts enabling ring-opening metathesis polymerization of cyclopentadiene at low temperatures. Nat. Commun. 2019 , 10 , 3860..
Feist, J. D.; Xia, Y. Enol ethers are effective monomers for ring-opening metathesis polymerization: synthesis of degra dable and depolymerizable poly(2,3-dihydrofuran). J. Am. Chem. Soc. 2020 , 142 , 1186−1189..
Sun, H.; Ibrahim, T.; Ritacco, A.; Durkee, K. Biomass-derived degradable polymers via alternating ring-opening metathesis polymerization of exo-oxanorbornenes and cyclic enol ethers. ACS Macro Lett. 2023 , 12 , 1642−1647..
Yang, J. H.; Xia, Y. Mechanochemical generation of acid-degradable poly(enol ether)s. Chem. Sci. 2021 , 12 , 4389−4394..
Arrington, K. J.; Murry, C. B.; Smith, E. C.; Marand, H.; Matson, J. B. Precision polyketones by ring-opening metathesis polymerization: effects of regular and irregular ketone spacing. Macromolecules 2016 , 49 , 3655−3662..
Arrington, K. J.; Waugh, J. B.; Radzinski, S. C.; Matson, J. B. Photo and biodegradable thermoplastic elastomers: combining ketone-containing polybutadiene with polylactide using ring-opening polymerization and ring-opening metathesis polymerization. Macromolecules 2017 , 50 , 4180−4187..
Alkskas, I. A.; Alhubge, A . M.; Azam, F. Synthesis, characterization and biological activity of polyketones. Chinese J. Polym. Sci. 2013 , 31 , 471−480..
Perrier, S.; Wang, X. Sacrificial synthesis. Nature 2007 , 445 , 271−272..
Hilf, S.; Kilbinger, A. F. M. Sacrificial synthesis of hydroxy-telechelic metathesis polymers via multiblock-copolymers. Macromolecules 2009 , 42 , 1099−1106..
Debsharma, T.; Behrendt, F. N.; Laschewsky, A.; Schlaad, H. Ring-opening metathesis polymerization of biomass-derived levoglucosenol. Angew. Chem. Int. Ed. 2019 , 58 , 6718−6721..
Elling, B. R.; Su, J. K.; Xia, Y. Degradable polyacetals/Ketals from alternating ringopening metathesis polymerization. ACS Macro Lett. 2020 , 9 , 180−184..
Boadi, F. O.; Zhang, J.; Yu, X.; Bhatia, S. R.; Sampson, N. S. Alternating ringopening metathesis polymerization provides easy access to functional and fully degradable polymers. Macromolecules 2020 , 53 , 5857−5868..
Becker, G.; Wurm, F. R. Functional biodegradable polymers via ring-opening polymerization of monomers without protective groups. Chem. Soc. Rev. 2018 , 47 , 7739−7782..
Kim, J. G. Chemical recycling of poly(bisphenol A carbonate). Polym. Chem. 2020 , 11 , 4830−4849..
McGuire, T. M.; Pérale, C.; Castaing, R.; Kociok-Köhn, G.; Buchard, A. Divergent catalytic strategies for the cis / trans stereoselective ring-opening polymerization of a dual cyclic carbonate/olefin monomer. J. Am. Chem. Soc. 2019 , 141 , 13301−13305..
Haider, T.; Shyshov, O.; Suraeva, O.; Lieberwirth, I.; Delius, M.; Wurm, F. R. Longchain polyorthoesters as degradable polyethylene mimics. Macromolecules 2019 , 52 , 2411−2420..
Xiang, S.; Zhang, Q.; Zhang, G.; Jiang, W.; Wang, Y.; Zhou, H.; Li, Q.; Tang, J. Facile synthesis of block copolymers by Tandem ROMP and eROP from Esters Precursors. Biomacromolecules 2014 , 15 , 3112−3118..
Steinbach, T.; Wurm, F. R. Poly(phosphoester)s: a new platform for degradable polymers. Angew. Chem. Int. Ed. 2015 , 54 , 6098−6108..
Wang, H.; Su, L.; Li, R.; Zhang, S.; Fan, J.; Zhang, F. Polyphosphoramidates that undergo acid-triggered backbone degradation. ACS Macro Lett. 2017 , 6 , 219−223..
Shieh, P.; Nguyen, H. V. T.; Johnson, J. A. Tailored silyl ether monomers enable backbone-degradable polynorbornene-based linear, bottlebrush and star copolymers through ROMP. Nat. Chem. 2019 , 11 , 1124−1132..
Shieh, P.; Zhang, W.; Husted, K. E. L.; Kristufek, S. L.; Xiong, B.; Lundberg, D. J. Cleavable comonomers enable degradable, recyclable thermoset plastics. Nature 2020 , 583 , 542−547..
Husted, K. E. L.; Shieh, P.; Lundberg, D. J.; Kristufek, S. L.; Johnson, J. A. Molecularly designed additives for chemically deconstructable thermosets without compromised thermomechanical properties. ACS Macro Lett. 2021 , 10 , 805−810..
Johnson, A. M.; Husted, K. E. L.; Kilgallon, L. J.; Johnson, J. A. Orthogonally deconstructable and depolymerizable polysilylethers via entropy-driven ringopening metathesis polymerization. Chem. Commun. 2022 , 58 , 8496−8499..
Huang, B.; Wei, M.; Vargo, E.; Qian, Y.; Xu, T.; Toste,F. D. Backbone-photodegradable polymers by incorporating acylsilane monomers via ring-opening metathesis polymerization. J. Am. Chem. Soc. 2021 , 143 , 17920−17925..
Chen, H. X.; Lei, Z. P.; Huang, S. F.; Jiang, H.; Yu, K.; Jin, Y. H.; Zhang, W. Poly(imine-amide) hybrid covalent adaptable networks via in situ oxidation polymerization. Chinese J. Polym. Sci. 2023 , 41 , 1577−1583..
Fishman, J. M.; Zwick, D. B.; Kruger, A. G.; Kiessling, L. L. Chemoselective, postpolymerization modification of bioactive, degradable polymers. Biomacromolecules 2019 , 20 , 1018−1027..
Shojaei, B.; Najafi, M.; Yazdanbakhsh, A.; Abtahi, M.; Zhang, C. A review on the applications of polyurea in the construction industry. Polym. Adv. Technol. 2021 , 32 , 2797−2812..
Mallick, A.; Xu, Y.; Lin, Y.; He, J.; Chan-Park, M. B.; Liu, X. W. Oxadiazabicyclooctenone as a versatile monomer for the construction of pH sensitive functional polymers via ROMP. Polym. Chem. 2018 , 9 , 372−377..
Wang, X.; Wen, Y.; Wang, Y.; Li, W.; You, W. 7-Oxa-2,3-diazanorbornene: a one-step accessible monomer for living ring-opening metathesis polymerization to produce backbone-biodegradable polymers. CCS Chem . 2024 , 1−13..
Si, G. F.; Chen, C. L. Cyclic–acyclic monomers metathesis polymerization for the synthesis of degradable thermosets, thermoplastics and elastomers. Nat. Synth. 2022 , 1 , 956−966..
Li, W.; Liao, D. H.; Li, Y. G.; Si, G. F.; Chen, C. L. Cyclic-acyclic monomers metathesis polymerization for the preparation of photodegradable polydicyclopentadiene and polyethylene-like materials. Sci China Chem. 2024 , 67 , 1311−1315..
Scherman, O. A.; Kim, H. M.; Grubbs, R. H. Synthesis of well-defined poly((vinyl alcohol)2- alt -methylene) via ring-opening metathesis polymerization. Macromolecules 2002 , 35 , 5366−5371..
0
Views
108
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution