FOLLOWUS
School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
wangzongbao@nbu.edu.cn
Published:01 August 2024,
Published Online:10 May 2024,
Received:27 February 2024,
Revised:08 April 2024,
Accepted:12 April 2024
Scan for full text
Gao, J. W.; Chen, L.; Zhong, Y. S.; Xing, C. W.; Li, Y. G.; Wang, Z. B. Structural evolution of ultra-high molecular weight polyethylene low-entangled films with reserved shish crystals during hot stretching. Chinese J. Polym. Sci. 2024, 42, 1227–1242
Jia-Wei Gao, Li Chen, Ye-Shun Zhong, et al. Structural Evolution of Ultra-High Molecular Weight Polyethylene Low-Entangled Films with Reserved Shish Crystals During Hot Stretching. [J]. Chinese Journal of Polymer Science 42(8):1227-1242(2024)
Gao, J. W.; Chen, L.; Zhong, Y. S.; Xing, C. W.; Li, Y. G.; Wang, Z. B. Structural evolution of ultra-high molecular weight polyethylene low-entangled films with reserved shish crystals during hot stretching. Chinese J. Polym. Sci. 2024, 42, 1227–1242 DOI: 10.1007/s10118-024-3143-3.
Jia-Wei Gao, Li Chen, Ye-Shun Zhong, et al. Structural Evolution of Ultra-High Molecular Weight Polyethylene Low-Entangled Films with Reserved Shish Crystals During Hot Stretching. [J]. Chinese Journal of Polymer Science 42(8):1227-1242(2024) DOI: 10.1007/s10118-024-3143-3.
The reserved shish crystals can induce the formation and structural evolution of shish-kebab crystals for UHMWPE low-entangled films during the hot stretching. High-temperature stretching is more favorable for structural evolution of UHMWPE films with reserved shish crystals compared to low-temperature stretching.
Shish crystals are crucial to achieving high performance low-dimensional ultra-high molecular weight polyethylene (UHMWPE) products. Typically
high stretch and shear flow fields are necessary for the formation of shish crystals. In this study
UHMWPE gel films with reserved shish crystals were prepared by gel molding
the structural evolution and properties of UHMWPE films stretched at temperatures of 100
110
120 and 130 °C were investigated by
in situ
small-angle X-ray
scattering (SAXS)/ultra-small-angle X-ray scattering (USAXS)/wide-angle X-ray diffraction (WAXD) measurements as well as scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) measurements. Our findings showed that the reserved shish crystals can facilitate the formation and structural evolution of shish-kebab crystals during the hot stretching. Additionally
the reserved shish crystals promote the structural evolution of UHMWPE films to a greater extent when stretched at 120 and 130 °C
compared to 100 and 110 °C
resulting in higher crystallinity
orientation
thermal properties
breaking strength and Young's modulus. Compared to UHMWPE high-entangled films with reserved shish crystals prepared by compression molding
UHMWPE low-entangled films with reserved shish crystals prepared by gel molding are more effective in inducing the formation and evolution of shish-kebab crystals during the hot stretching
resulting in increased breaking strength and Young's modulus.
UHMWPE low-entangled filmsReserved shish crystalsStructural evolutionHot stretching
Wang, Z.; Ma, Z.; Li, L. Flow-induced crystallization of polymers: molecular and thermodynamic considerations.Macromolecules2016,49, 1505−1517..
Pennings, A. J.; Lageveen, R.; de Vries, R. S. Hydrodynamically induced crystallization of polymers from solution.Colloid Polym. Sci.1977,255, 532−542..
Hu, W. G.; Schmidt-Rohr, K. Characterization of ultradrawn polyethylene fibers by NMR: crystallinity, domain sizes and a highly mobile second amorphous phase.Polymer2000,41, 2979−2987..
Zhao, Y.; Zhu, Y.; Sui, G.; Chen, F.; Fu, Q. Tailoring the crystalline morphology and mechanical property of olefin block copolymerviablending with a small amount of UHMWPE.Polymer2017,109, 137−145..
Huang, Y. F.; Zhang, Z. C.; Xu, J. Z.; Xu, L.; Zhong, G. J.; He, B. X.; Li, Z. M. Simultaneously improving wear resistance and mechanical performance of ultrahigh molecular weight polyethylene via cross-linking and structural manipulation.Polymer2016,90, 222−231..
Dyer, S. R.; Lassila, L. V.; Jokinen, M.; Vallittu, P. K. Effect of fiber position and orientation on fracture load of fiber-reinforced composite.Dent. Mater.2004,20, 947−55..
Jordan, N. D.; Olley, R. H.; Bassett, D. C.; Hine, P. J.; Ward, I. M. The development of morphology during hot compaction of Tensylon high-modulus polyethylene tapes and woven cloths.Polymer2002,43, 3397−3404..
Marissen, R. Design with ultra strong polyethylene fibers.Mater. Sci. Appl.2011,02, 319−330..
Porter, R. S.; Kanamoto, T.; Zachariades, A. E. Property opportunities with polyolefins: a review. Preparations and applications of high stiffness and strength by uniaxial draw.Polymer1994,35, 4979−4984..
Shen, L.; Peng, M.; Qiao, F.; Zhang, J. L. Preparation of microporous ultra high molecular weight polyethylene (UHMWPE) by thermally induced phase separation of a UHMWPE/liquid paraffin mixture.Chinese J. Polym. Sci.2008,26, 653−657..
Xia, L.; Xi, P.; Cheng, B. A comparative study of UHMWPE fibers prepared by flash-spinning and gel-spinning.Mater. Lett.2015,147, 79−81..
Hu, S.; Feng, Y.; Yin, X.; Zou, X.; Qu, J. Structure and properties of UHMWPE products strengthened and toughened by pulse vibration molding at low temperature.Polymer2021,229, 124026..
Xiao, M.; Yu, J.; Zhu, J.; Chen, L.; Zhu, J.; Hu, Z. Effect of UHMWPE concentration on the extracting, drawing, and crystallizing properties of gel fibers.J. Mater. Sci.2011,46, 5690−5697..
Keum, J. K.; Zuo, F.; Hsiao, B. S. Formation and stability of shear-induced shish-kebab structure in highly entangled melts of UHMWPE/HDPE blends.Macromolecules2008,41, 4766−4776..
Xu, L.; Chen, C.; Zhong, G. J.; Lei, J.; Xu, J. Z.; Hsiao, B. S.; Li, Z. M. Tuning the superstructure of ultrahigh-molecular-weight polyethylene/low-molecular-weight polyethylene blend for artificial joint application.ACS Appl. Mater. Interfaces2012,4, 1521−1529..
Zhang, L.; Lu, C.; Dong, P.; Wang, K.; Zhang, Q. Realizing mechanically reinforced all-polyethylene material by dispersing UHMWPEviahigh-speed shear extrusion.Polymer2019,180, 121711..
Kakiage, M.; Fukagawa, D. Preparation of ultrahigh-molecular-weight polyethylene fibers by combination of melt-spinning and melt-drawing.Mater. Today Commun.2020,23, 100864..
Pennings, A. J.; Smook, J. Mechanical properties of ultra-high molecular weight polyethylene fibres in relation to structural changes and chain scissioning upon spinning and hot-drawing.J. Mater. Sci.1984,19, 3443−3450..
Yeh, J. T.; Lin, S. C.; Tu, C. W.; Hsie, K. H.; Chang, F. C. Investigation of the drawing mechanism of UHMWPE fibers.J. Mater. Sci.2008,43, 4892−4900..
Xu, H.; An, M.; Lv, Y.; Zhang, L.; Wang, Z. Structural development of gel-spinning UHMWPE fibers through industrial hot-drawing process analyzed by small/wide-angle X-ray scattering.Polym. Bull.2017,74, 1−16..
An, M.; Xu, H.; Lv, Y.; Gu, Q.; Tian, F.; Wang, Z. An in situ small-angle X-ray scattering study of the structural effects of temperature and draw ratio of the hot-drawing process on ultra-high molecular weight polyethylene fibers.RSC Adv.2016,6, 50373−51484..
Wang, Z.; An, M.; Xu, H.; Lv, Y.; Tian, F.; Gu, Q. Structural evolution from shish-kebab to fibrillar crystals during hot-stretching process of gel spinning ultra-high molecular weight polyethylene fibers obtained from low concentration solution.Polymer2017,120, 244−254..
An, M.; Lv, Y.; Yao, G.; Zhang, L.; Wang, Z. Structural transformation from shish-kebab crystals to micro-fibrils through hot stretching process of gel-spun ultra-high molecular weight polyethylene fibers with high concentration solution.J. Polym. Sci., Part B: Polym. Phys.2018,56, 225−238..
Blais, P.; Manley, R. S. J. Morphology of Nascent Ziegler-Natta polymers.Science1966,153, 539−541..
Blais, P.; Manley, R. S. J. Morphology of nascent polyolefins prepared by Ziegler-Natta catalysis.J. Polym. Sci., Part A: Polym. Chem.1968,6, 291−334..
Manley, T. G. S. J. Morphology of nascent polyethylene prepared with the catalyst VOCl3(C2H5)2AlCl.Polymer1972,66, 627−635..
Chen, Y.; Liang, P.; Yue, Z.; Li, W.; Yang, Y. Entanglement formation mechanism in the POSS modified heterogeneous Ziegler-Natta catalysts.Macromolecules2019,52, 7593−7602..
Chen, Y.; Li, W.; Zhang, L.; Ye, C.; Tao, G.; Ren, C.; Jiang, B.; Wang, J.; Yang, Y.In situsynthesized self-reinforced HDPE/UHMWPE composites with high content of less entangled UHMWPE and high gradient-distributed oriented structures.ACS Appl. Polym. Mater.2023,5, 88−98..
Dermeneva, M.; Ivan’kova, E.; Marikhin, V.; Myasnikova, L.; Yagovkina, M.; Radovanova, E. InX-ray analysis of compacted and sintered UHMWPE reactor powders, Journal of Physics: Conference Series, 2018 ; p 012058..
Chanzy, H. D.; Bonjour, E.; Marchessault, R. H. Nascent structures during the polymerization of ethylene.Colloid Polym. Sci.1974,252, 8−14..
Reneker, D. H.; Kataphinan, W.; Theron, A.; Zussman, E.; Yarin, A. L. Nanofiber garlands of polycaprolactone by electrospinning.Polymer2002,43, 6785−6794..
Bawn, C. E. H.; Ledwith, A.; McFarlane, N. Anionic polymerization of ethylene oxide in dimethyl sulphoxide.Polymer1969,10, 653−659..
Ingram, P.; Schindler, A. Morphology of as-polymerized polythylene II. Electron microscopy.Macromol. Chem. Phys.1968,111, 267−270..
Uehara, H.; Tamura, T.; Kakiage, M.; Yamanobe, T. Nanowrinkled and nanoporous polyethylene membranesviaentanglement arrangement control.Adv. Funct. Mater.2012,22, 2048−2057..
Salari, M.; Pircheraghi, G. Interdiffusion versus crystallization at semicrystalline interfaces of sintered porous materials.Polymer2018,156, 54−65..
Jauffrès, D.; Lame, O.; Vigier, G.; Doré, F. Microstructural origin of physical and mechanical properties of ultra high molecular weight polyethylene processed by high velocity compaction.Polymer2007,48, 6374−6383..
An, M. F.; Xu, H. J.; Lv, Y.; Zhang, L.; Gu, Q.; Tian, F.; Wang, Z. B. The influence of chitin nanocrystals on structural evolution of ultra-high molecular weight polyethylene/chitin nanocrystal fibers in hot-drawing process.Chinese J. Polym. Sci.2016,34, 1373−1385..
An, M.; Xu, H.; Lv, Y.; Tian, F.; Gu, Q.; Wang, Z. The effect of chitin nanocrystal on the structural transition of shish-kebab to fibrillar crystals of ultra-high molecular weight polyethylene/chitin nanocrystal fibers during hot-stretching process.Eur. Polym. J.2017,96, 463−473..
Deng, B.; Wang, Z.; Chen, L.; Li, X. Influence of prereserved shish crystals on the structural evolution of ultrahigh-molecular weight polyethylene films during the hot stretching process.Macromolecules2022,55, 4600−4613..
Deng, B.; Chen, L.; Zhong, Y.; Li, X.; Wang, Z. The effect of temperature on the structural evolution of ultra-high molecular weight polyethylene films with pre-reserved shish crystals during the stretching process.Polymer2023,267, 125690..
Bartczak, Z.; Beris, P. F. M.; Wasilewski, K.; Galeski, A.; Lemstra, P. J. Deformation of the ultra-high molecular weight polyethylene melt in the plane-strain compression.J. Appl. Polym. Sci.2012,125, 4155−4168..
Diop, M. F.; Burghardt, W. R.; Torkelson, J. M. Well-mixed blends of HDPE and ultrahigh molecular weight polyethylene with major improvements in impact strength achievedviasolid-state shear pulverization.Polymer2014,55, 4948−4958..
Huang, Y. F.; Xu,J. Z.; Li, J. S.; He, B. X.; Xu, L.; Li, Z. M. Mechanical properties and biocompatibility of melt processed, self-reinforced ultrahigh molecular weight polyethylene.Biomaterials2014,35, 6687−97..
Huang, Y. F.; Xu, J. Z.; Zhang, Z. C.; Xu, L.; Li, L. B.; Li, J. F.; Li, Z. M. Melt processing and structural manipulation of highly linear disentangled ultrahigh molecular weight polyethylene.Chem. Eng. J.2017,315, 132−141..
Deplancke, T.; Lame, O.; Rousset, F.; Aguili, I.; Seguela, R.; Vigier, G. Diffusion versus cocrystallization of very long polymer chains at interfaces: experimentalstudy of sintering of UHMWPE nascent powder.Macromolecules2013,47, 197−207..
da Silva Chagas, N. P.; Lopes da Silva Fraga, G.; Marques, M. d. F. V. Fibers of ultra-high molecular weight polyethylene obtained by gel spinning with polyalphaolefin oil.Macromol. Res.2020,28, 1082−1090..
Tao, G. Exploring the entangled state and molecular weight of UHMWPE on the microstructure and mechanical properties of HDPE/UHMWPE blends.J. Appl. Polym. Sci.2021,138, 50741..
Gao, P.; Mackley, M. R. Effect of presolvent loading on the ultimate drawability of ultra-high molecular weight polyethylene.Polymer1991,32, 3136−3139..
Tian, Y.; Zhu, C.; Gong, J.; Yang, S.; Ma, J.; Xu, J. Lamellae break induced formation of shish-kebab during hot stretching of ultra-high molecular weight polyethylene precursor fibers investigated by in situ small angle X-ray scattering.Polymer2014,55, 4299−4306..
Hoogsteen, W.; Tenbrinke, G.; Pennings, A. J. DSC experiments on gel-spun polyethylene fibers.Colloid Polym. Sci.1988,266, 1003−1013..
Hammersley, A. P.; Svensson, S. O.; Thompson, A. Calibration and correction of spatial distortions in 2D detector systems.Rev. Sci. Instr.1995,346, 312−321..
Wunderlich, B.; Czornyj, G. A study of equilibrium melting of polyethylene.Macromolecules1977,10, 906−913..
Dai, H.; Yin, G. Z.; Zhao, F. J.; Bian, Z. X.; Xu, Y. J.; Zhang, W. B.; Miao, X. R.; Li, H. Facile synthesis and hierarchical assembly of polystyrene-block-poly (perfluorooctylethyl acrylates).Polymer2017,113, 46−52..
Fancher, C. M.; Hoffmann, C. M.; Frontzek, M. D.; Bunn, J. R.; Payzant, E. A. Probing orientation information using 3-dimensional reciprocal space volume analysis.Rev. Sci. Instr.2019,90, 013902..
Phillips, A. W.; Bhatia, A.; Zhu, P. W.; Edward, G. Shish formation and relaxation in sheared isotactic polypropylene containing nucleating particles.Macromolecules2011,44, 3517−3528..
Zhou, D.; Yang, S. G.; Lei, J.; Hsiao, B. S.; Li, Z. M. Role of stably entangled chain network density in shish-kebab formation in polyethylene under an intense flow field.Macromolecules2015,48, 6652−6661..
Perret, R.; Ruland, W. Single and multiple X-ray small-angle scattering of carbon fibres.J. Appli. Crystallography1969,2, 209−218..
Ruland, W. Small-angle scattering studies on carbonized cellulose fibers.J. Polym. Sci., Part C: Polym. Symp.1969,28, 143−151..
Tang, Y.; Jiang, Z.; Men, Y.; An, L.; Enderle, H. F.; Lilge, D.; Roth, S. V.; Gehrke, R.; Rieger, J.Uniaxial deformation of overstretched polyethylene:in-situsynchrotron small angle X-ray scattering study.Polymer2007,48, 5125−5132..
Li, X.; Lin, Y.; Ji, Y.; Meng, L.; Zhang, Q.; Zhang, R.; Zhang, W.; Li, L. Strain and temperature dependence of deformation mechanism of lamellar stacks in HDPE and its guidance on microporous membrane preparation.Polymer2016,105, 264−275..
Shen, L.; Severn, J.; Bastiaansen, C. W. M. Drawing behavior and mechanical properties of ultra-high molecular weight polyethylene blends with a linear polyethylene wax.Polymer2018,153, 354−361..
Chiu, H. T.; Wang, J. H. Characterization of UHMWPE sol-gel transition by parallel plate rheometer and pulsed NMR.Polymer1999,40, 6859−6864..
Lv, F.; Chen, X.; Wan, C.; Su, F.; Ji, Y.; Lin, Y.; Li, X.; Li, L. Deformation of ultrahigh molecular weight polyethylene precursor fiber: crystal slip with or without melting.Macromolecules2017,50, 6385−6395..
Lv, R.; He, Y.; Xie, K.; Hu, W. Crystallization rates of moderate and ultrahigh molecular weight polyethylene characterized by flash DSC measurement.Polym. Int.2020,69, 18−23..
0
Views
62
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution