Liu, W. L.; Lyu, M. F.; Zhang, H. Y.; Liu, J. Y.; Zhang, S. J. Preparation and rheological characterization of long chain branching polyglycolide. Chinese J. Polym. Sci. 2024, 42, 1177–1184
Wei-Lin Liu, Ming-Fu Lyu, Heng-Yuan Zhang, et al. Preparation and Rheological Characterization of Long Chain Branching Polyglycolide. [J]. Chinese Journal of Polymer Science 42(8):1177-1184(2024)
Liu, W. L.; Lyu, M. F.; Zhang, H. Y.; Liu, J. Y.; Zhang, S. J. Preparation and rheological characterization of long chain branching polyglycolide. Chinese J. Polym. Sci. 2024, 42, 1177–1184 DOI: 10.1007/s10118-024-3118-4.
Wei-Lin Liu, Ming-Fu Lyu, Heng-Yuan Zhang, et al. Preparation and Rheological Characterization of Long Chain Branching Polyglycolide. [J]. Chinese Journal of Polymer Science 42(8):1177-1184(2024) DOI: 10.1007/s10118-024-3118-4.
Preparation and Rheological Characterization of Long Chain Branching Polyglycolide
long chain branching (LCB) PGA was prepared by two-step functional group reaction method and the structure of LCB was fully characterized by rheology. It is clear that the melt strength of the modified PGA has been greatly improved.
Abstract
The long chain branching (LCB) polyglycolide (PGA) was successfully prepared by the successive reactions of the terminal hydroxyl groups of PGA with triglycidyl isocyanurate (TGIC) and pyromellitic dianhydride (PMDA). The influence of LCB produced by functional group reaction on rheological and crystallization behavior was studied and discussed through linear rheol
ogy
uniaxial elongation and DSC (differential scanning calorimetry). The much higher viscosity and the more notable strain hardening behavior of modified PGA indicates the LCB with high degree of entanglements are created. The melt strength of PGA is finally improved greatly and can make sure that the supercritical CO
Divya, G. Polyhydroxy alkanoates—a sustainable alternative to petro-based plastics.J. Pet. Environ. Biotechnol.2013,4, 1−8..
Al-Itry, R.; Lamnawar, K.; Maazouz, A. Reactive extrusion of PLA, PBAT with a multi-functional epoxide: Physico-chemical and rheological properties.Eur. Polym. J.2014,58, 90−102..
Corre, Y. M.; Maazouz, A.; Duchet, J.; Reignier, J. Batch foaming of chain extended PLA with supercritical CO2: influence of the rheological properties and the process parameters on the cellular structure.J. Supercrit. Fluids2011,58, 177−188..
Wang, K.; Shen, J.; Ma, Z.; Zhang, Y.; Pang, S. Preparation and properties of poly(ethylene glycol-co-cyclohexane-1,4-dimethanol terephthalate)/polyglycolic acid (PETG/PGA) blends.Polymers2021,13, 452..
Báez, J. E.; Marcos-Fernández, Á. A comparison of three different biodegradable aliphatic oligoesters (PGA, PLLA, and PCL) with similar linear alkyl end groups by DSC and SAXS.Int. J. Polym. Anal. Charact.2015,20, 637−644..
Casalini, T.; Rossi, F.; Santoro, M.; Perale, G. Structural Characterization of poly-L-lactic acid (PLLA) and poly(glycolic acid)(PGA) oligomers.Int. J. of Mol. Sci.2011,12, 3857−3870..
Jie, L. Y.; Andri, A.; Chin, A. B.; Ishida, Z. A. N. Bioresorbable and degradable behaviors of PGA: current state and future prospects.Polym. Eng. Sci.2020,60, 2657−2675..
Lanlan, C.; Xiaojie, S.; Yueqing, R.; Rong, W.; Wenbin, L.; Xuelei, D. Influence of chain extenders on the melt strength and thermal stability of polyglycolic acid.J. Appl. Polym. Sci.2021,138, 50551..
Yu, C.; Bao, J.; Xie, Q.; Shan, G.; Bao, Y.; Pan, P. Crystallization behavior and crystalline structural changes of poly(glycolic acid) investigatedviatemperature-variable WAXD and FTIR analysis.CrystEngComm2016,18, 7894−7902..
Jem, K. J.; Tan, B. The development and challenges of poly(lactic acid) and poly(glycolic acid).Adv. Ind. Eng. Polym. Res.2020,3, 60−70..
Jr, A. Bioresorbable polymers for tissue engineering.Tissue Eng. 2010 , 235−246..
Lee, S.; Hongo, C.; Nishino, T. Crystal modulus of poly(glycolic acid) and its temperature dependence.Macromolecules2017,50, 5074−5079..
Chang, L. F.; Zhou, Y. G.; Ning, Y.; Zou, J. Toughening effect of physically blended polyethylene oxide on polyglycolic acid.J. Polym. Environ.2020,28, 2125−2136..
Bersted, B. H. On the effects of very low levels of long chain branching on rheological behavior in polyethylene.J. Appl. Polym. Sci.1985,30, 3751−3765..
Dorgan, J. R.; Lehermeier, H.; Mang, M. Thermal and rheological properties of commercial-grade poly(lactic acid)s.J. Polym. Environ.2000,8, 1−9..
Helminen], A. Chain extending of lactic acid oligomers. Effect of 2,2′-bis(2-oxazoline) on 1,6-hexamethylene diisocyanate linking reaction.Polymer2001,42, 3333−3343..
Inata, H.; Matsumura, S. Chain extenders for polyesters. IV. Properties of the polyesters chain-extended by 2,2′-bis(2-oxazoline).J. Appl. Polym. Sci.1987,33, 3069−3079..
S.; M.; Aharoni; C.; E.; Forbes; W.; B.; Hammond; D. High-temperature reactions of hydroxyl and carboxyl PET chain end groups in the presence of aromatic phosphite.J. Polym. Sci., Part A: Polym. Chem.2010,24, 1281−1296..
Tuominen, J.; Jv., S. Synthesis and characterization of lactic acid based poly(ester-amide).Macromolecules2000,33, 3530−3535..
Woo, S. I.; Kim, B. O.; Jun, H. S.; Chang, H. N. Polymerization of aqueous lactic acid to prepare high molecular weight poly(lactic acid) by chain-extending with hexamethylene diisocyanate.Polym. Bull.1995,35, 415−421..
Suwanda, D.; Balks, S. T. The reactive modification of polyethylene. I: The effect of low initiator concentrations on molecular properties.Polym. Eng. Sci.1993,33, 1585−1591..
Cicero, J. A.; Dorgan, J. R.; Garrett, J.; Runt, J.; Lin, J. Effects of molecular architecture on two-step, melt-spun poly (lactic acid) fibers.J. Appl. Polym. Sci.2002,86, 2839−2846..
Gotsis, A.; Zeevenhoven, B.; Hogt, A. The effect of long chain branching on the processability of polypropylene in thermoforming.Polym. Eng. Sci.2004,44, 973−982..
Parvez, M.; Rahaman, M.; Soares, J.; Hussein, I.; Suleiman, M. Effect of long chain branching on the properties of polyethylene synthesizedviametallocene catalysis.Polym. Sci., Ser. B2014,56, 707−720..
Crosby,B. J.; Mangnus, M.; de Groot, W.; Daniels, R.; McLeish, T. C. B. Characterization of long chain branching: Dilution rheology of industrial polyethylenes.J. Rheol.2002,46, 401−426..
Gotsis, A. D.; Zeevenhoven, B. L. F.; Tsenoglou, C. Effect of long branches on the rheology of polypropylene.J. Rheol.2004,48, 895−914..
Sugimoto, M.; Suzuki, Y.; Hyun, K.; Ahn, K. H.; Ushioda, T.; Nishioka, A.; Taniguchi, T.; Koyama, K. Melt rheology of long-chain-branched polypropylenes.Rheol. Acta2006,46, 33−44..
Nofar, M.; Zhu, W.; Park, C. B.; Randall, J. Crystallization kinetics of linear and long-chain-branched polylactide.Ind. Eng. Chem. Res.2011,50, 13789−13798..
Tian, J.; Yu, W.; Zhou, C. Crystallization kinetics of linear and long-chain branched polypropylene.J. Macromol. Sci., Part B2006,45, 969−985..
Zhai, W.; Yu, J.; Ma, W.; He, J. Influence of long-chain branching on the crystallization and melting behavior of polycarbonates in supercritical CO2.Macromolecules2007,40, 73−80..
Zhang, Z.; Yu, F.; Zhang, H. Isothermal and non-isothermal crystallization studies of long chain branched polypropylene containing poly(ethylene-co-octene) under quiescent and shear conditions.Polymers2017,9, 236..
Krause, B.; Voigt, D.; Huβler, L.; Auhl, D.; Münstedt, H. Characterization of electron beam irradiated polypropylene: influence of irradiation temperature on molecular and rheological properties.J. Appl. Polym. Sci.2006,100, 2770−2780..
Munstedt, H.; Gabriel, C.; Auhl, D. Long-chain branching and elongational properties of polyethylene and polypropylene melts.Polym. Prepr.2003,44, 27−28..
Münstedt, H.; Laun, H. M. Elongational properties and molecular structure of polyethylene melts.Rheol. Acta1981,20, 211−221..
Tabatabaei, S. H.; Carreau, P. J.; Ajji, A. Rheological properties of blends of linear and long-chain branched polypropylenes.Polym. Eng. Sci.2010,50, 191−199..
Interplay of Crosslinking Structures and Segmental Dynamics in Solid-Liquid Elastomers
Shear-induced Precursors of Fibrillar Crystals of Poly(butene-1): A Rheological Study
Influence of Interfacial Enantiomeric Grafting on Melt Rheology and Crystallization of Polylactide/Cellulose Nanocrystals Composites
Related Author
Hao Wang
Wan-Su Peng
Qi Wu
Yan Zhao
Shi-Tai Wang
Yi Yang
Jin-Rong Wu
Xiao-Liang Wang
Related Institution
South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology
Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology
Suzhou Niumag Analytical Instrument Corporation
Key Laboratory of High-Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University
State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University