

FOLLOWUS
State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China
wxcmx@ustc.edu.cn (X.W.)
zgui@ustc.edu.cn (Z.G.)
Received:05 December 2025,
Revised:2025-12-29,
Accepted:16 January 2026,
Online First:09 February 2026,
Published:15 March 2026
Scan QR Code
Zhang, D.; Shao, M. D.; Wang, X.; Gui, Z. In situ loaded nanoscale red phosphorus on mesoporous silica for simultaneously improved flame retardancy and toughness of epoxy composites. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-026-3553-5
Di Zhang, Meng-Di Shao, Xin Wang, et al.
Zhang, D.; Shao, M. D.; Wang, X.; Gui, Z. In situ loaded nanoscale red phosphorus on mesoporous silica for simultaneously improved flame retardancy and toughness of epoxy composites. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-026-3553-5 DOI:
Di Zhang, Meng-Di Shao, Xin Wang, et al.
A nanohybrid flame retardant (NRP@MSN) was fabricated by
in situ
loading nanoscale red phosphorus onto me
soporous silica. Incorporated into epoxy
it simultaneously enhanced fire safety (52.8% lower PHRR) and impact toughness (165% higher char yield)
demonstrating a synergistic nano-barrier and char-forming mechanism.
Nanoscale red phosphorus (NRP) was synthesized
via
a phosphorus-amine dissolution method and immobilized onto mesoporous silica nanospheres (MSNs) to obtain hybrid NRP@MSN particles with improved dispersion stability. Epoxy resin (EP) composites containing 2 wt% fillers were prepared to evaluate their thermal and flame-retardant behaviors. Compared with EP
the NRP@MSNs/EP composite significantly enhanced fire safety
resulting in a 52.8% reduction in the peak heat release rate
a 13.9% decrease in total smoke production
and a 165% increase in char yield. Mechanical testing revealed a notable toughening effect under impact loading. The improved flame retardancy originates from the combined nano-barrier effect of MSNs and the catalytic charring and radical-quenching functions of NRP. This work demonstrates an efficient strategy for stabilizing NRP and highlights its strong potential as an environmentally friendly flame retardant for EP systems.
Gu, H.; Ma, C.; Gu, J.; Guo, J.; Yan, X.; Huang, J.; Zhang, Q.; Guo, Z. An overview of multifunctional epoxy nanocomposites. J. Mater. Chem. C 2016 , 4 , 5890−5906..
Auvergne, R.; Ca illol, S.; David, G.; Boutevin, B.; Pascault, J. P. Biobased thermosetting epoxy: present and future. Chem. Rev. 2014 , 114 , 1082−1115,.
Jin, F. L.; Li, X.; Park, S. J. Synthesis and application of epoxy resins: a review. J. Ind. Eng. Chem. 2015 , 29 , 1−11..
Wang, R. Zheng, P.; Li, J.; Sun, J.; Liu, H.; Li, X.; Liu, Q. An efficient cross-linked phosphorus-free flame retardant for epoxy resins. ACS Omega 2022 , 7 , 37170−37179..
Ansari, S. A.; Khan, Z.; Ansari, M. O.; Cho, M. H. Earth-abundant stable elemental semiconductor red phosphorus-based hybrids for environmental remediation and energy storage applications. RSC Adv . 2016 , 6 , 44616−44629..
Wang, J.; Liu, W.; Hu, Y.; Song, L.; Hu, Y.; Hou, Y.; Hu, W. Optimizing low-temperature CO oxidation under realistic combustion conditions: the impact of CeO 2 morphology on Au/CeO 2 catalysts. J. Hazard. Mater. 2025 , 487 , 137182..
Zhi, M.; Yang, X.; Fan, R.; Yue, S.; Zheng, L.; Liu, Q.; He, Y. A comprehensive review of reac tive flame-retardant epoxy resin: fundamentals, recent developments, and perspectives. Polym. Degrad. Stabil. 2022 , 201 , 109976..
Liu, Z.; Yu, Z.; Tang, Q.; Zhang, K.; Deng, W.; Zhang, L.; Wang, R.; Chen, J.; Deng, J.; Wang, L.; Wang, Q.; Chen, M.; Liu, Z. Highly efficient flame-retardant and transparent epoxy resin. Polym. Adv. Technol. 2021 , 32 , 2940−2952..
Lu, S. Y.; Hamerton, I. Recent developments in the chemistry of halogen-free flame retardant polymers. Prog. Polym. Sci. 2002 , 27 , 1661−1712..
Zhang, J.; Mi, X.; Chen, S.; Xu, Z.; Zhang, D.; Miao, M.; Wang, J. A bio-based hyperbranched flame retardant for epoxy resins. Chem. Eng. J. 2020 , 381 , 122719..
Abdalrhem, H.A.O.; Pan, Y.; Gu, H.; Ao, X.; Ji, X.; Jiang, X.; Sun, B. Synthesis of DOPO-based phosphorus-nitrogen containing hyperbranched flame retardant and its effective application for poly(ethylene terephthalate) via synergistic effect. Polymers 2023 , 15 , 662..
Xu, T.; Gao, D.; Yin, H.; Yang, Q.; Zh ao, J.; Wang, X.; Niu, H. Synthesis and flame retardant behavior of phosphorous- and nitrogen-containing copolymer and its application in polypropylene. Macromol. Rapid Commun. 2024 , 45 , 2400376..
Fang, J.; Dong, Y.; Lu, S.; Liu, J.; Ai, L.; Liu, P. Preparation of polyurea elastomer with flame retardant, insulation and thermal conductivity properties. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 2024 , 39 , 781−789..
Huang, Z.; Yan, C.; Shen, N.; He, S.; Cao, J.; Zhao, Y.; Jie, Y.; Zhang, J.; Yu, C.; Bo Zhao, H. Naringenin-engineered durable cotton fabric with integrated flame retardancy, antibacterial, and UV-photothermal performance. Polym. Degrad. Stabil. 2025 , 241 , 111584..
Plutnar, J.; Šturala, J.; Mazánek, V.; Sofer, Z.; Pumera, M. Fluorination of black phosphorus—will black phosphorus burn down in the elemental fluorine. Adv. Funct. Mater. 2018 , 28 , 1801438..
[Hastie, J.W. Molecular basis of flame inhibition. J. Res. Natl. Bur. Stand A Phys. Chem . 1973 , 77A , 733–754..
Li, X.; Zhang, J.; Zhang, L.; Ruiz de Luzuriaga, A.; Rekondo, A.; Wang, D. Y. Recyclable flame-retardant epoxy composites based on disulfide bonds: flammability and recyclability. Compos. Commun. 2021 , 25 , 100754..
Jayabalakrishnan, D.; S., S.K.; S., M.; K., B. Flame retardant, load bearing and thermal studies on satin weaved Sunn hemp fibre and cashew nut shell de-oiled cake biosilica epoxy composites. Biomass Conv. Bioref. 2024 , 14 , 21085−21093..
Yu, C.; Wu, T.; Yang, F.; Wang, H.; Rao, W.; Zhao, H. B. Interfacial engineering to construct p-loaded hollow nanohybrids for flame-retardant and high-performance epoxy resins. J. Colloid Interface Sci. 2022 , 628 , 851−863..
Velencoso, M. M.; Battig, A.; Markwart, J. C.; Schartel, B.; Wurm, F. R. Molecular firefighting—how modern phosphorus chemistry can help solve the challenge of flame retardancy. Angew. Chem. Int. Ed. 2018 , 57 , 10450−10467..
Hamciuc, C.; Vlad-Bubulac, T.; Serbezeanu, D.; Macsim, A. M.; Lisa, G.; Anghel, I.; Şofran, I. E. Effects of phosphorus and boron compounds on thermal stability and flame retardancy properties of epoxy composites. Polymers 2022 , 14 , 4005..
Zhong, F.; Yang, X.; Chen, C.; Zhou, Z.; Dai, Y.; Guo, W.; Liu, X.; Yang, X. Flame protection capability of waterborne epoxy coatings enhanced by inorganic-organic phenyl zirconium phosphate anchored boron nitride. Prog. Org. Coat. 2023 , 184 , 107885..
Green, J. A review of phosphorus- containing flame retardants. J. Fire Sci. 1996 , 14 , 353−366..
Cao, Z. J.; Dong, X.; Fu, T.; Deng, S. B.; Liao, W.; Wang, Y. Z. Coated vs. naked red phosphorus: a comparative study on their fire retardancy and smoke suppression for rigid polyurethane foams. Polym. Degrad. Stabil. 2017 , 136 , 103−111..
Liu, Q.; Zhang, X.; Wang, J.; Zhang, Y.; Bian, S.; Cheng, Z.; Kang, N.; Huang, H.; Gu, S.; Wang, Y. Crystalline red phosphorus nanoribbons: large-scale synthesis and electrochemical nitrogen fixation. Angew. Chem. Int. Ed. 2020 , 59 , 14383−14387..
Dogan, M.; Murat Unlu, S. Flame retardant effect of boron compounds on red phosphorus containing epoxy resins. Polym. Degrad. Stabil. 2014 , 99 , 12−17..
Cheng, C.; Lu, Y.; Ma, W.; Li, S.; Yan, J.; Du, S. Preparation and characterization of polydopamine/melamine microencapsulated red phosphorus and its flame retardance in epoxy resin. RSC Adv. 2021 , 11 , 20391−20402..
Wu, Q.; Liu, X.; Li, B.; Tan, L.; Han, Y.; Li, Z.; Liang, Y.; Cui, Z.; Zhu, S.; Wu, S. Eco-friendly and degradable red phosphorus nanoparticles for rapid microbial sterilization under visible light. J. Mater. Sci. Technol. 2021 , 67 , 70−79..
Liu, W.; Ju, S.; Yu, X. Phosphorus-amine-based synthesis of nanoscale red phosphorus for application to sodium-ion batteries. ACS Nano 2020 , 14 , 974−984..
Ambrosi, A.; Sofer, Z.; Pumera, M. Electrochemical exfoliation of layered black phosphorus into phosphorene. Angew. Chem. Int. Ed. 2017 , 56 , 10443−10445..
Sofer, Z.; Luxa, J.; Bouša, D.; Sedmidubský, D.; Lazar, P.; Hartman, T.; Hardtdegen, H.; Pumera, M. The covalent functionalization of layered black phosphorus by nucleophilic reagents. Angew. Chem. Int. Ed. 2017 , 56 , 9891−9896..
Brannum, D. J.; Price, E. J.; Villamil, D.; Kozawa, S.; Brannum, M.; Berry, C.; Semco, R.; Wnek, G. E. Flame-retardant polyurethane foams: one-pot, bioinspired silica nanoparticle coating. ACS Appl. Polym. Mater. 2019 , 1 , 2015−2022..
Xiao, Z.; Niu, H.; Wang, W.; Zhou, K.; Hu, Y.; Wang, X. Novel rich aromatic and phosphorus-containing compound cured epoxy resins toward outstanding comprehensive performances. Colloids Surf., A 2024 , 683 , 133008..
Guo, W.; Wang, X.; Huang, J.; Mu, X.; Cai, W.; Song, L.; Hu, Y. Phosphorylated cardanol-formaldehyde oligomers as flame-retardant and toughening agents for epoxy thermosets. Chem. Eng. J. 2021 , 423 , 130192..
Fu, Y.; Zhong, W. H. Cure kinetics behavior of a functionalized graphitic nanofiber modified epoxy resin. Thermochim. Acta 2011 , 516 , 58−63..
Hu, B.; Han, W.; Wang, Y.; Hu, K.; Duan, L. Study on the toughening of epoxy resin modified by multi-component fillers of carbon nanofibers/nano-silica/short carbon fibers. Polym. Compos. 2025 , 46 , S736−S752..
Sun, Y.; Zhang, Z.; Wong, C. P. Study on mono-dispersed nano-size silica by surface modification for underfill applications. J. Colloid Interface Sci. 2005 , 292 , 436−444..
Xie, W.; Huang, S.; Liu, S.; Zhao, J. A biobased Schiff base from protocatechualdehyde and its application in flame-retardant, low-smoke epoxy resin systems. RSC Adv. 2019 , 9 , 30815−30822..
Zhou, K.; Wu, Y.; Yin, L.; Luo, J.; Lu, K.; Yu, B.; Shi, Y.; Zhang, S.; Jia, S. In situ assembly of polyphosphazene on Fe-MMT nanosheets for high-performance flame-retardant epoxy composites. Polym. Degrad. Stabil . 2025 , 235 , 111264..
Rao, W.; Liu, C.; Zhao, Y.; He, S.; Yu, C.; Wang, Y. T.; Zhao, H.-B. Hierarchical nanospheres toward flame-retardant, mechanically strong, and low-toxicity epoxy resins. ACS Appl. Polym. Mater. 2024 , 6 , 9238−9248..
Chen, Y.; Liu, J.; Li, X.; Zhang, Z.; Li, Z. Mesoporous silica-loaded phosphorus-modified hexadecanol na nocomposites for flame-retardant and shape-stabilized phase change materials. Compos. Part A 2025 , 199 , 109227..
Rao, W. H.; Xu, H.-X.; Xu, Y. J.; Qi, M.; Liao, W.; Xu, S.; Wang, Y. Z. Persistently flame-retardant flexible polyurethane foams by a novel phosphorus-containing polyol. Chem. Eng. J. 2018 , 343 , 198−206..
Vahabi, H.; Movahedifar, E.; Kandola, B.; Saeb, M. R. Flame retardancy index (FRI) for polymermaterials ranking. Polymers 2023 , 15 , 2422..
Ding, S.; Liu, P.; Gao, C.; Wang, F.; Ding, Y.; Zhang, S.; Yang, M. Synergistic effect of cocondensed nanosilica in intumescent flame-retardant polypropylene. Polym. Adv. Technol. 2019 , 30 , 1116−1125..
Chen, Y.; Zhan, J.; Zhang, P.; Nie, S.; Lu, H.; Song, L.; Hu, Y. Preparation of intumescent flame retardant poly(butylene succinate) using fumed silica as synergistic agent. Ind. Eng. Chem. Res . 2010 , 49 ..
Kashiwagi, T.; Gilman, J. W.; Butler, K. M.; Harris, R. H.; Shields, J. R.; Asano, A. Flame retardant mechanism of sil ica gel/silica. Fire Mater. 2000 , 24 , 277−289..
Niu, H.; Nabipour, H.; Wang, X.; Song, L.; Hu, Y. Phosphorus-free vanillin-derived intrinsically flame-retardant epoxy thermoset with extremely low heat release rate and smoke emission. ACS Sustainable Chem. Eng. 2021 , 9 , 5268−5277..
Gibertini, E.; Carosio, F.; Aykanat, K.; Accogli, A.; Panzeri, G.; Magagnin, L. Silica-encapsulated red phosphorus for flame retardant treatment on textile. Surf. Interfaces 2021 , 25 , 101252..
Zou, B.; Qiu, S.; Ren, X.; Zhou, Y.; Zhou, F.; Xu, Z.; Zhao, Z.; Song, L.; Hu, Y.; Gong, X. Combination of black phosphorus nanosheets and MCNTs via phosphoruscarbon bonds for reducing the flammability of air stable epoxy resin nanocomposites. J. Hazard. Mater. 2020 , 383 , 121069..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802046900号