

FOLLOWUS
a.College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
b.Zhejiang-South Africa Joint Laboratory of Sustainable Polymer Composite Materials and Technology, Hangzhou Normal University, Hangzhou 311121, China
hengti-wang@hznu.edu.cn (H.T.W.)
yongjin-li@hznu.edu.cn (Y. J. L.)
Received:09 October 2025,
Accepted:16 December 2025,
Online First:06 February 2026,
Published:15 March 2026
Scan QR Code
Xia, Y.; Sang, M. H.; Wang, X.; He, N.; Wang, H. T.; Li, Y. J. Overcoming the trade-off between toughness and stiffness of fully polymer-based alloys by elastomeric salami particles through reactive blending. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3541-1
Yan Xia, Ming-Hui Sang, Xiao Wang, et al. Overcoming the Trade-off between Toughness and Stiffness of Fully Polymer-based Alloys by Elastomeric Salami Particles through Reactive Blending[J/OL]. Chinese Journal of Polymer Science, 2026, 44675-687.
Xia, Y.; Sang, M. H.; Wang, X.; He, N.; Wang, H. T.; Li, Y. J. Overcoming the trade-off between toughness and stiffness of fully polymer-based alloys by elastomeric salami particles through reactive blending. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3541-1 DOI:
Yan Xia, Ming-Hui Sang, Xiao Wang, et al. Overcoming the Trade-off between Toughness and Stiffness of Fully Polymer-based Alloys by Elastomeric Salami Particles through Reactive Blending[J/OL]. Chinese Journal of Polymer Science, 2026, 44675-687. DOI: 10.1007/s10118-025-3541-1.
By employing the reactive processing
a facile approach was developed in this work to overcome the performance t
rade-off between toughness and rigidity of all-polymer alloys
via
constructing elastomeric salami particles within engineering plastic matrix.
Rubber-toughened thermoplastic materials have become ubiquitous in modern society owing to their lightweight nature and desirable combination of advantageous performances. Despite the ever-increasing demand
the development of polymer alloys that are lightweight
high-strength
and high-toughness remains an ongoing challenge. Inspired by the unique “salami” microstructure from commercial acrylonitrile butadiene styrene copolymer (ABS) and high-impact polystyrene (HIPS)
a facile approach was developed to overcome the trade-off between enhancing the toughness and rigidity of fully polymer-based alloys by virtue of elastomeric salami particles. This strategy entails pre-grafting rigid poly(lactic acid) (PLLA) chains with glycidyl methacrylate-grafted octene ethylene copolymer (POE-
g
-GMA) using complementary reactive groups. It can be envisaged that the PLLA grafts featuring strong incompatibility with polypropylene (PP) remain fixed in elastomer phase upon the subsequent melt compounding
facilitating the
in situ
formation of “hard core (PLLA)-soft shell (polyolefin elastomer
POE)” particles in polypropylene (PP) matrix. The all-polymer alloys containing elastomeric salami particles demonstrated unprecedented performance combinations
including upper notched impact strengths (56.8 kJ/m
2
)
even higher tensile strength (36.8 MPa)
and Young’s modulus (0.93 GPa) than that of the PP matrix. Furthermore
these materials are lightweight without the incorporation of reinforcing nano-fillers
which is competitive with industrial engineering plastics. It is highly anticipated that this universal and highly efficient protocol will be appropriate for arbitrary rubber toughened/reinforced systems
offering a paradigm in the design of advanced all-polymer alloys.
Li, C.; Wang, Z.; Liu, W.; Ji, X.; Su, Z. Copolymer distribution in core-shell Rubber particles in high-impact polypropylene investigated by atomic force microscopy-infrared. Macromolecules 2020 , 53 , 2686−2693..
Cater, H. L.; Allen, M. J.; Linnell, M. I.; Rylski, A. K.; Wu, Y.; Lien, H. M.; Mangolini, F.; Page, Z. A. Supersoft norbornene-based thermoplastic elastomers with high strength and upper service temperature. Adv. Mater. 2024 , 36 , 2402431..
Albanese, K. R.; Blankenship, J. R.; Quah, T.; Zhang, A.; Delaney, K. T.; Fredrickson, G. H.; Bates, C. M.; Hawker, C. J. Improved elastic recovery from ABC triblock terpolymers. ACS Polym. Au 2023 , 3 , 376−382..
Wee, J. W.; Chudnovsky, A.; Choi, B. H. Brittle-ductile transitions of rubber toughened polypropylene blends: a review. Int. J. Pr. Eng. Man.-Gt. 2024 , 11 , 1361−1402..
Chen, Y.; Ling, X.; Wu, J.; Ye, H.; Wang, H.; Li, Y. Simultaneous physical cross-linking and mechanical strengthening of elastomers by enantiomeric interactions through reactive processing. ACS Appl. Polym. Mater. 2023 , 5 , 10127−10136..
Hohl, D. K.; Ferahian, A. C.; Montero de Espinosa, L.; Weder, C. Toughening of glassy supramolecular polymer networks. ACS Macro Lett. 2019 , 8 , 1484−1490..
Wu, C. L.; Zhang, M. Q.; Rong, M. Z.; Friedrich, K. Tensile performance improvement of low nanoparticles filled-polypropylene composites. Compos. Sci. Technol. 2002 , 62 , 1327−1340..
Yang, R.; Cai, C.; Han, X.; Chen, Z.; Gu, G.; Zhang, C.; Zou, G.; Li, J. Supertough and biodegradable poly (lactic Acid) blends with “hard-soft” core-shell unsaturated poly (ether-ester) through selfvulcanization. Macromolecules 2023 , 56 , 7271−7285..
Chen, J.;Wang, W.; Zou, C.; Chen, C. Mechanical recycling of mixed plastics by supramolecular dynamic cross-linking strategy. J. Am. Chem. Soc. 2025 , 147 , 24747−24758.
Nixon, K. D.; Schyns, Z. O. G.; Luo, Y.; Ierapetritou, M. G.; Vlachos, D. G.; Korley, L. T. J.; Epps III, T. H. Analyses of circular solutions for advanced plastics waste recycling. Nat. Chem. Eng. 2024 , 1 , 615−626..
Mohanraman, R.; Steiner, P.; Kocabas, C.; Kinloch, I. A.; Bissett, M. A. Synergistic improvement in the thermal conductivity of hybrid boron nitride nanotube/nanosheet epoxy composites. ACS Appl. Nano Mater. 2024 , 7 , 13142−13146.
Wang, Z.; Zhou, M.; Jiang, J.; Huang, H.; Chen, B.; Li, Y.; Zhai, W. Fabrication of PEI/CF composite parts with multi-angle reinforced mechanical properties by a micro-extrusion foaming FDM process. Composites Part A 2024 , 187 , 108503.
[Cheng, Q.; Sheng, Z.; Ding, Y.; Li, Y.; Zhang, X. 3D printed colloidal Aerogels: Principle, Process, Performance, and perspective. Prog. Mater. Sci . 2025 , 152 , 101456..
[Ziaee, M.; Johnson, J.; Yourdkhani, M. 3D printing of short-carbon-fiber-reinforced thermoset polymer composites via frontal polymerization. ACS Appl. Mater. Interfaces 2022 , 14 , 16694−16702..
Corte, L.; Rebizant, V.; Hochstetter, G.; Tournilhac, F.; Leibler, L. Toughening with little stiffness loss: polyamide filled with ABC triblock copolymers. Macromolecules 2006 , 39 , 9365−9374..
Liang, J. Z.; Li, R. K. Y. Rubber toughening in polypropylene: A review. J. Appl. Polym. Sci. 2000 , 77 , 409−417..
Wang, D.; Li, F.; Xu, X.; Zhong, L.; Guan, C.; Gao, Y.; Jiang, W.; Liang, H. Brittle ductile transition of POE toughened HDPE and its lowest rigidity loss: effect of HDPE molecular weight. J. Polym. Res. 2022 , 29 , 38..
Qu, Y.; Rong, C.; Ling, X.; Wu, J.; Chen, Y.; Wang, H.; Li, Y. Role of interfacial postreaction during thermal treatment: Toward a better understanding of the toughness of PLLA/reactive elastomer blends. Macromolecules 2022 , 55 , 1321−1331..
Gaikwad, P. S.; Kowalik, M.; Jensen, B. D.; Van Duin, A.; Odegard, G. M. Molecular dynamics modeling of interfacial interactions between flattened carbon nanotubes and amorphous carbon: Implications f or ultra-lightweight composites. ACS Appl. Nano Mater. 2022 , 5 , 5915−5924..
Zheng, L.; Zuo, Y.; Li, X.; Wu, Y. Biomimetic swallow nest structure: a lightweight and high-strength thermal insulation material. ACS Nano 2022 , 16 , 8116−8127..
[Cai, K.; Yang, A.; Yu, C.; Tu, S.; Feng, J. 2-Methylimidazole catalyzes the ring-opening of ADR for large-scale preparation of biobased poly(lacticacid) composite with balanced stiffness and toughness. Int. J. Biol. Macromol . 2025 , 318 , 144943..
Ruzette, A. V.; Leibler, L. Block copolymers in tomorrow’s plastics. Nat. Mater. 2005 , 4 , 19−31..
Fu, S. Y.; Feng, X. Q.; Lauke, B.; Mai, Y. W. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos. Part B 2008 , 39 , 933−961..
Fu, Q.; Wang, G.; Shen, J. Polyethylene toughened by CaCO3 particle: Brittle-ductile transition of CaCO 3 -toughened HDPE. J. Appl. Polym. Sci. 1993 , 49 , 673−677.
Urdampilleta, I.; González, A.; Iruin, J. J.; de la Cal, J. C.; Asua, J. M. Morphology of high impact polypropylene particles. Macromolecules 2005 , 38 , 2795−2801..
Ran, X.; Lin, T.; Jiang, Q.; Zeng, Y.; Liu, W. Toughening of vinyl ester resins and carbon fiber-reinforced composites using core-shell rubber particles with varied surface functionalization. Compos. Commun. 2025 , 53 , 102204..
Li, F.; Gao, Y.; Zhang, Y.; Jiang, W. Design of high impact thermal plastic polymer composites with balanced toughness and rigidity: toughening with core-shell rubber modifier. Polymer 2020 , 191 , 122237..
Wang, S.; Katnam, K. B.; İnal, O.; Zou, Z.; Taylor, J.; Sprenger, S.; Potluri, P.; Soutis, C. The static and fatigue failure of co-cured composite joints with two-scale interface toughening. Compos. Part B 2024 , 287 , 111867..
Ye, H.; Li, A.; Li, G.; Li, K.; Zhang, J.; Wang, D.; Ray, S, S.; Wang, H.; Li, Y. Construction of elastomeric nanobelts in a glassy polymer matrix: Toward supertoughened nanoalloys with significantly depressed yielding behaviors. Macromolecules 2024 , 57 , 9999−10015..
Gao, Y.; Jiang, Z.; Zhang, J.; Tan, H.; Jin, J.; Jiang, W. Models and theories regarding the brittle-ductile transition of rubber-toughened thermoplastics and their application in the design of high-impact polymer composites with balanced toughness and rigidity. Polym. Sci. Technol. 2025 , 1 , 314−329..
Wang, X.; Gao, Y.; Jin, J.; Jiang, W. A strategy to develop homo-polypropylene composites with high impact and high rigidity. Macromolecules 2024 , 57 , 4576−4583..
Li, F.; Gao, Y.; Jiang, W. Design of high impact thermal plastic polymer composites with balanced toughness and rigidity: Toughening with one phase modifier. Polymer 2019 , 170 , 101−106..
Wang, J.; Zhang, X.; Jiang, L.; Qiao, J. Advances in toughened polymer materials by structured rubber particles. Prog. Polym. Sci. 2019 , 98 , 101160..
Ciprari, D.; Jacob, K.; Tannenba um, R. Characterization of polymer nanocomposite interphase and its impact on mechanical properties. Macromolecules 2006 , 39 , 6565−6573..
Wu, S. Control of intrinsic brittleness and toughness of polymers and blends by chemical structure: a review. Polym. Int. 1992 , 29 , 229−247..
Zhang, J.; Huang, S.; Wang, J.; Chen, C.; Wang, H.; Ye, L.; Li, Y. Formation of interconnected elastomeric phase unevenly jammed by nanosilica in the plastic matrix during melt processing. Macromolecules 2023 , 57 , 373−384..
Yang, H.; Zhang, X.; Qu, C.; Li, B.; Zhang, L.; Zhang, Q.; Fu, Q. Largely improved toughness of PP/EPDM blends by adding nano-SiO 2 particles. Polymer 2007 , 48 , 860−869..
Jiang, W.; An, L.; Jiang, B. Brittle-tough transition in elastomer toughening thermoplastics: effects of the elastomer stiffness. Polymer 2001 , 42 , 4777−4780..
Valera, T.; Morita, A.; Demarquette, N. Study of morphologies of PMMA/PP/PS ternary blends. Macromolecules 2006 , 39 , 2663−2675..
Qu, Y.; Hong, J.; Chen, Y.; Ling, X.; Wu, J.; Wang, H.; Li, Y. Rigid molecular chains trapped reactive elastomers for high performance PLLA composites with excellent tough-strength balance. Compos. Part B 2023 , 255 , 110619..
Zhang, J.; Hong, J.; Wang, H.; Li, Y. Acrylonitrile-butadienestyrene (ABS) salami structure inspired PLLA composites with excellent stiffness-toughness balance. Compos. Commun. 2023 , 42 , 101680..
Cai, K.; Wang, Q.; Liu, X.; Tu, S.; Wang, J.; Feng, J. PLA/PBAT/CaCO3 composites with balanced super-toughness and stiffness through dynamic vulcanization and double interfacial compatibilization. ACS Appl. Polym. Mater. 2024 , 6 , 13378−13388..
Hu, Y.; Jia, Z.; Li, Y.; Chang, L.; Wang, Y. Synthesis and impact properties of in situ bulk made ABS resins toughened by high cis-1, 4 polybutadiene. Mater. Sci. Eng. A 2011 , 528 , 6667−6672..
Pearson, R. A.; Yee, A. F. Influence of particle size and particle size distribution on toughening mechanisms in rubber-modified epoxie s. J. Mater. Sci. 1991 , 26 , 3828−3844..
Huang, G.; Han, D.; Jin, Y.; Song, P.; Yan, Q.; Gao, C. Fabrication of nitrogen-doped graphene decorated with organophosphor and lanthanum toward high-performance ABS nanocomposites. ACS Appl. Nano Mater. 2018 , 1 , 3204−3213..
Jiang, H.; Li, Y.; Wang, Q. Syndiotactic polypropylene-based elastomer as promising toughening agent for waste appliances-derived polypropylene. J. Mater. Res. Technol. 2024 , 33 , 6288−6296..
Maimaitiming, A.; Zhang, M.; Tan, H.; Wang, M.; Zhang, M.; Hu, J.; Xing, Z.; Wu, G. High-strength triple shape memory elastomers from radiation-vulcanized polyolefin elastomer/polypropylene blends. ACS Appl. Polym. Mater. 2019 , 1 , 1735−1748.
Wei, Z.; Li, S.; Ning, N.; Tian, M.; Zhang, L.; Mi, J. Theoretical and experimental insights into the phase transition of rubber/plastic blends during dynamic vulcanization. Ind. Eng. Chem. Res. 2017 , 56 , 13911−13918..
Gong, X.; Wang, M.; Zhou H. Harnessing pH for sustainable and eff ective synthesis of phenolic compound-loaded nanoparticles directly from raw plants. Food Chem. 2025 , 467 , 142327..
Pang, W.; Li, B.; Wu, Y.; Zhang, Y.; Yang, J.; Tian, Z.; Tian, S.; Li, J. One-step synthesis of PtPb alloy nanoparticles via wet chemical method for the upgraded recycling of PLA plastic. ACS Sustain. Chem. Eng. 2024 , 13 , 165−173..
Cai, K.; Liu, X.; Ma, X.; Zhang, J.; Tu, S.; Feng, J. Preparation of biodegradable PLA/PBAT blends with balanced toughness and strength by dynamic vulcanization process. Polymer 2024 , 291 , 126587..
Cai, K.; Wang, X.; Yu, C.; Zhang, J.; Tu, S.; Feng, J. Enhancing the mechanical properties of PBAT/thermoplastic starch (TPS) biodegradable composite films through a dynamic vulcanization process. ACS Sustain. Chem. Eng. 2024 , 12 , 1573−1583..
Ye, H.; Li, C.; Zhang, Y.; Xia, Y.; Wang, H.; Li, Y. Formation of an organic rigid core-soft shell structure based on the melting temperature difference between the core and the matrix by reactive processing: A facile strategy for highly efficient polymer toughening. Macromolecules 2025 , 58 , 1223−1234.
Chen, J.; Rong, C.; Lin, T.; Chen, Y.; Wu, J.; You, J.; Wang, H.; Li, Y. Stable co-continuous PLA/PBAT blends compatibilized by interfacial stereocomplex crystallites: Toward full biodegradable polymer blends with simultaneously enhanced mechanical properties and crystallization rates. Macromolecules 2021 , 54 , 2852−2861..
Wang, H.; Chen, J.; Li, Y. Arrested elongated interface with small curvature by the simultaneous reactive compatibilization and stereocomplexation. Macromolecules 2020 , 53 , 10664−10674..
Wang, G.; Li, S.; Feng, Y.; Hu, Y.; Zhao, G.; Jiang, W. Effectively toughening polypropylene with in situ formation of core-shell starch-based particles. Carbohydr. Polym. 2020 , 249 , 116795..
Wang, Y.; Li, J.; Zhang, Z.; Wang, J.; Yang, Y.; Cao, Y.; Wang, W. Magnetic polypropylene composites with selectively localized reactive nano-Fe 3 O 4 in toughener of POE- g -MAH: Towards super toughness, high flexibility and balanced strength. Mater. Des. 2022 , 217 , 110607..
Yang, H.; Zhang, Q.; Guo, M.; Wang, C.; Du, R.; Fu, Q. Study on the pha se structures and toughening mechanism in PP/EPDM/SiO 2 ternary composites. Polymer 2006 , 47 , 2106−2115..
Li, R.; Zhang, X.; Zhao, Y.; Hu, X.; Zhao, X.; Wang, D. New polypropylene blends toughened by polypropylene/poly (ethylene-co-propylene) in-reactor alloy: Compositional and morphological influence on mechanical properties. Polymer 2009 , 50 , 5124−5133..
Du, H.; Zhang, Y.; Liu, H.; Liu, K.; Jin, M.; Li, X.; Zhang, J. Influence of phase morphology and crystalline structure on the toughness of rubber-toughened isotatic polypropylene blends. Polymer 2014 , 55 , 5001−5012..
Jiang, Y.; Wu, J.; Leng, J.; Cardon, L.; Zhang, J. Reinforced and toughened PP/PS composites prepared by Fused Filament Fabrication (FFF) with in-situ microfibril and shish-kebab structure. Polymer 2020 , 186 , 121971..
Han, S.; Zhang, T.; Guo, Y.; Li, C.; Wu, H.; Guo, S. Brittle-ductile transition behavior of the polypropylene/ultra-high molecular weight polyethylene/olefin block copolymers ternary blends: Dispersion and interface design. Polymer 2019 , 182 , 121819..
Dasari, A.; Zhang, Q. X.; Yu, Z. Z.; Mai, Y. W. Toughening polypropylene and its nanocomposites with submicrometer voids. Macromolecules 2010 , 43 , 5734−5739..
Feng, Y.; Yuan, Z.; Sun, H.; He, H.; Zhang, G. Toughening and reinforcing wood flour/polypropylene composites with high molecular weight polyethylene under elongation flow. Compos. Sci. Technol. 2020 , 200 , 108395..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802046900号