

FOLLOWUS
a.College of New Energy and Materials, China University of Petroleum, Beijing 102249, China
b.Green Living and Innovation Division, Hong Kong Productivity Council, HKPC Building, 78 Tat Chee Avenue, Kowloon 999077, Hong Kong, China
weixuewei@cup.edu.cn (X.W.W)
yehaimu@cup.edu.cn (H.M.Y)
Received:23 October 2025,
Accepted:16 December 2025,
Published Online:02 February 2026,
Published:15 March 2026
Scan QR Code
Yin, H. T.; Ye, D. Y.; Zhao, W.; Wei, X. W.; Meng, X. Y.; Ye, H. M. Commercial sugar alcohol boosts nucleation and crystallization ability of poly(ethylene succinate) via combination of intermolecular interactions and epitaxial templating. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3539-8
Hao-Ting Yin, Dong-Yuan Ye, Wei Zhao, et al. Commercial Sugar Alcohol Boosts Nucleation and Crystallization Ability of Poly(ethylene succinate)
Yin, H. T.; Ye, D. Y.; Zhao, W.; Wei, X. W.; Meng, X. Y.; Ye, H. M. Commercial sugar alcohol boosts nucleation and crystallization ability of poly(ethylene succinate) via combination of intermolecular interactions and epitaxial templating. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3539-8 DOI:
Hao-Ting Yin, Dong-Yuan Ye, Wei Zhao, et al. Commercial Sugar Alcohol Boosts Nucleation and Crystallization Ability of Poly(ethylene succinate)
Poly(ethylene succinate) (PES)
a promising biodegradable polyester with cost advantages
suffers from inherently slow crystallization kinetics
which severely limits its processability and practical applications. To address this challenge
this study explored the use of commercially available
low-cost
and food-safe sugar alcohols
including Xylitol (Xy)
D-sorbitol (DS)
and D-mannitol (DM)
as ef
fective nucleating agents for PES. Remarkably
all three polyols significantly enhanced the nucleation and crystallization ability of PES
with DM exhibiting the most pronounced effect. DM increased the crystallization temperature by up to 23.9 °C and accelerated the overall crystallization rate by more than 13-fold at only 0.5 wt% loading level. Through a combination of differential scanning calorimetry (DSC)
polarized optical microscopy (POM)
and wide-angle X-ray diffraction (WAXD) analyses
we revealed that DM promotes PES crystallization
via
a dual mechanism: epitaxial templating facilitated by excellent lattice matching
and enhanced chain adjustment through intermolecular hydrogen-bonding interactions. In contrast
Xy and DS primarily function through hydrogen-bonding interactions. This work not only identifies DM as a highly efficient
economical
and industrially viable nucleating agent for PES
but also provides fundamental insights into the role of the molecular structure and crystallization ability of nucleating agents in regulating polymer crystallization.
Williams, A. T.; Rangel-Buitrago, N. The past, present, and future of plastic polluti on. Mar. Pollut. Bull. 2022 , 176 , 113429..
Thushari, G. G. N.; Senevirathna, J. D. M. Plastic pollution in the marine environment. Heliyon 2020 , 6 , e04709..
Villarrubia-Gómez, P.; Carney Almroth, B.; Eriksen, M.; Ryberg, M.; Cornell, S. E. Plastics pollution exacerbates the impacts of all planetary boundaries. One Earth 2024 , 7 , 2119−2138..
Babaremu, K. O.; Okoya, S. A.; Hughes, E.; Tijani, B.; Teidi, D.; Akpan, A.; Igwe, J.; Karera, S.; Oyinlola, M.; Akinlabi, E. T. Sustainable plastic waste management in a circular economy. Heliyon 2022 , 8 , e09984..
Haq, F.; Kiran, M.; Khan, I.A.; Mehmood, S.; Aziz, T.; Haroon, M. Exploring the pathways to sustainability a comprehensive review of biodegradable plastics in the circular economy. Mater. Today Sustain. 2025 , 29 , 101067..
García-Depraect, O.; Bordel, S.; Lebrero, R.; Santos-Beneit, F.; Börner, R. A.; Börner, T.; Muñoz, R. Inspired by nature Microbial production, degradation and valorization of biodegradable bioplastics for life-cyc le-engineered products. Biotechnol. Adv. 2021 , 53 , 107772..
Itabana, B. E.; Mohanty, A. K.; Dick, P.; Sain, M.; Bali, A.; Tiessen, M.; Lim, L. T.; Misra, M. Poly(butylene adipate-co-terephthalate) (PBAT) – based biocomposites: a comprehensive review. Macromol. Mater. Eng. 2024 , 309 , 2400179..
Zhou, W.; Bergsma, S.; Colpa, D. I.; Euverink, G. W.; Krooneman, J. Polyhydroxyalkanoates (PHAs) synthesis and degradation by microbes and applications towards a circular economy. J. Environ. Manage. 2023 , 341 , 118033..
Farah, S.; Anderson, D. G.; Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications — a comprehensive review. Adv. Drug Del. Rev. 2016 , 107 , 367−392..
Aliotta, L.; Seggiani, M.; Lazzeri, A.; Gigante, V.; Cinelli, P. A brief review of poly(butylene succinate) (PBS) and its main copolymers: synthesis, blends, composites, biodegradability, and applications. Polymers 2022 , 14 , 844..
Lettner, M.; Schöggl, J. P.; Stern, T. Factors i nfluencing the market diffusion of bio-based plastics: Results of four comparative scenario analyses. J. Clean Prod. 2017 , 157 , 289−298..
Chen, G. Q.; Patel, M. K. Plastics derived from biological sources: present and future: a technical and environmental review. Chem. Rev. 2012 , 112 , 2082−2099..
Larrañaga, A.; Lizundia, E. A review on the thermomechanical properties and biodegradation behaviour of polyesters. Eur. Polym. J. 2019 , 121 , 109296..
Kumar, P.; Park, H.; Yuk, Y.; Kim, H.; Jang, J.; Pagolu, R.; Park, S.; Yeo, C.; Choi, K.Y. Developed and emerging 1,4-butanediol commercial production strategies: forecasting the current status and future possibility. Crit. Rev. Biotechnol. 2024 , 44 , 530−546..
Shehata, W. M.; Nady, T. G.; Gad, F. K.; Shoaib, A. M.; Bhran, A. A. A comparative study of mono ethylene glycol economic production via different techniques. Sci. Rep. 2024 , 14 , 28375..
Zhou, S.; Sun, Y.; Ma, H.; Jia, C.; Sun, X.; Yang, Y.; Liu, J.; Yang, J. Linear diamid es derivative nucleated biodegradable poly(ethylene succinate) polyester: crystallization kinetics and aggregated structure manipulated by hydrogen bond interaction. J. Polym. Environ. 2021 , 29 , 3605−3617..
Wei, Z.; Zhou, S.; Xie, Y.; Sun, Y.; Ma, H.; Xie, Z.; Zhu, Z.; Yang, J. Dual effects of a diamide derivative as nucleator on crystallization kinetics and aggregated structure of biodegradable poly(ethylene succinate). Polym. Test. 2021 , 94 , 107022..
Jia, C.; Zhou, S.; Xie, Z.; Wang, L.; Yang, Y.; Sun, X.; Xie, Y.; Yang, J. Crystallization kinetics, aggregated structure and thermal stability of biodegradable poly(ethylene succinate) manipulated by a biocompatible layered metal phosphonate as an efficient nucleator. Polym. Int. 2021 , 70 , 1264−1272..
[Murmu, U.; Adhikari, J.; Naskar, A.; Dey, D.; Roy, A.; Ghosh, A.; Ghosh, M., in: M.S.J. Hashmi, E-Publishing Inc., Oxford, 2022 , p. 917-927.
Odrobina, M.; Deák, T.; Székely, L.; Mankovits, T.; Keresztes, R.Z.; Kalácska, G. The effect of crystallinity on the toughness of cast polyamide 6 rods with different diameters. Polymers 2020 , 12 , 293..
Jia, Y.; Mao, Z.; Huang, W.; Zhang, J. Effect of temperature and crystallinity on the thermal conductivity of semi-crystalline polymers a case study of polyethylene. Mater. Chem. Phys. 2022 , 287 , 126325..
Sapegin, D. A.; Gubanova, G. N.; Vlasova, E. N.; Zaharova, N. V.; Afanas'eva, N. V.; Popova, E. N.; Sokolova, M. P.; Lavrentyev, V. K.; Primachenko, O. N.; Kononova, S. V. Introduction of a crystalline block as a strategy to increase swelling resistance and dimensional stability of sulfonated copolyimide. J. Appl. Polym. Sci. 2022 , 139 , 52373..
Li, W.; Cao, J.; Fu, L.; Liu, F.; Huang, Y.; He, Y.; Jiang, L.; Dan, Y. Effect of stereo-complexation on crystallization behavior and barrier properties of poly-lactide. Int. J. Biol. Macromol. 2024 , 261 , 129834..
Papageorgiou, G. Z.; Terzopoulou, Z.; Achilias, D. S.; Bikiaris, D. N.; Kapnisti, M.; Gournis, D. Biodegradable poly(ethylene succinate) nanocomposites. Effect of filler type on thermal behaviour and crystallization kinetics. Polymer 2013 , 54 , 4604−4616..
Sinha Ray, S.; Makhatha , M. E. Thermal properties of poly(ethylene succinate) nanocomposite. Polymer 2009 , 50 , 4635−4643..
Zhou, S.; Wei, Z.; Sun, Y.; Zhu, Z.; Xie, Z.; Ma, H.; Yin, J.; Wang, J.; Yang, J. Biocompatible linear diamides derivative-nucleated biodegradable poly(ethylene succinate) tailored crystallization kinetics, aggregated structure and thermal degradation. Polym. Degrad. Stab. 2021 , 183 , 109428..
Bandyopadhyay, J.; Ray, S.S.; Scriba, M.; Malwela, T. The impact of nanoclay on the crystal growth kinetics and morphology of biodegradable poly(ethylene succinate) composite. Polymer 2012 , 53 , 3602−3612..
Papageorgiou, G. Z.; Terzopoulou, Z.; Tsanaktsis, V.; Achilias, D .S.; Triantafyllidis, K.; Diamanti, E. K.; Gournis, D.; Bikiaris, D. N. Effect of graphene oxide and its modification on the microstructure, thermal properties and enzymatic hydrolysis of poly(ethylene succinate) nanocomposites. Thermochim. Acta 2015 , 614 , 116−128..
Teng, S.; Qiu, Z. Enhanced crystallization and mechanical properties of biodegradable poly(ethylene succinate) by octaisobutyl-polyhedral oligomeric silsesquioxanes in their nanocomposites. Thermochim. Acta 2017 , 649 , 2 2−30..
Tang, L.; Qiu, Z. Crystallization kinetics and morphology of biodegradable poly(ethylene succinate) octavinyl-polyhedral oligomeric silsesquioxanes nanocomposites. Ind. Eng. Chem. Res. 2014 , 53 , 11365−11370..
Zhu, S.; Zhao, Y.; Qiu, Z. Crystallization kinetics and morphology studies of biodegradable poly(ethylene succinate)/multi-walled carbon nanotubes nanocomposites. Thermochim. Acta 2011 , 517 , 74−80..
Yin, H.; Ye, D.; Wu, T.; Meng, X.; Ye, H. M. Regulating the crystallization kinetics of poly(ethylene succinate) via hexahydric alcohols: Roles of myo-inositol and dipentaerythritol. Polymer 2025 , 332 , 128592..
Raithore, S.; Peterson, D. G. Effects of polyol type and particle size on flavor release in chewing gum. Food Chem. 2018 , 253 , 293−299..
Shuman, C. R.; Kemp, R. L.; Coyne, R.; Wohl, M. G. Clinical use of sorbitol as a sweetening agent in diabetes mellitus. Am. J. Clin. Nutr. 1956 , 4 , 61−67..
Wölnerhanssen, B. K.; Meyer-Gerspach, A. C.; Beglinger, C.; Islam, M. S. Metabolic effects of the natural sweeteners xylitol and erythritol A comprehensive review. Crit. Rev. Food Sci. Nutr. 2020 , 60 , 1986−1998..
Bégin, A.-M.; Monfette, M.-L.; Boudrias-Dalle, É.; Lavallée, E.; Samouelian, V.; Soulières, D.; Chagnon, M.; Fournier, M.-A.; Letarte, N.; Adam, J.-P. Effect of mannitol on acute kidney injury induced by cisplatin. Support. Care Cancer. 2021 , 29 , 2083−2091..
Yang, B.; Wang, H.; Wan, X.; Fan, B.; Sun, H. Nonisothermal crystallization of poly(L-lactic acid) promoted by polyols. Polym. Adv. Technol. 2023 , 34 , 2189−2197..
[Zhang, X.; Yang, B.; Fan, B.; Sun, H.; Zhang, H.; Enhanced nonisothermal crystallization and heat resistance of poly(l-lactic acid) by d-sorbitol as a homogeneous nucleating agent. ACS Macro Lett . 2021 , 10 , 154−160..
Yang, B.; Fan, B.; Wang, H.; Ma, Y. Analyzing isothermal crystallization of poly(lactic acid)/polyol systems: Correlated DSC and simulation studies. Polymer 2024 , 297 , 126843..
Papageorgiou, G. Z.; Bikiaris, D. N. Crystallization and melting behavior of three biodegradable poly(alkylene succinates). A comparative study. Polymer 2005 , 46 , 12081−12092..
Lv, Z. Y.; Zhang, M. C.; Zhang, Y.; Guo, B. H.; Xu, J. Study on melting and recrystallization of poly(butylene succinate) lamellar crystals via step heating differential scanning calorimetry. Chinese J. Polym. Sci. 2017 , 35 , 1552−1560..
Legras, R.; Mercier, J. P.; Nield, E. Polymer crystallization by chemical nucleation. Nature 1983 , 304 , 432−434..
Xu, X.; Ting, C. L.; Kusaka, I.; Wang, Z. G. Nucleation in polymers and soft matter. Annu. Rev. Phys. Chem. 2014 , 65 , 449−475..
Li, Y.; Wen, J.; Wu, T.; Cao, C.; Meng, X.; Ye, H. M. Mechanical properties and microstructure of polychlorotrifluoroethylene toughened by polyamide 11 based on intermolecular interaction. J. Appl. Polym. Sci. 2022 , 139 , e53028..
Li, J.; Jiang, Z.; Qiu, Z. Isothermal melt crystallization kinetics study of cellulose nanocrystals nucleated biodegradable Poly(ethylene succinate). Polymer 2021 , 227 , 123869..
Zhang, K.; Qiu, Z. Effect of cyanuric acid as an efficient nucleating agent on the crystallization of novel biodegradable branched poly(ethylene succinate). Macromol 2021 , 1 , 112−120..
[Mordor Intelligence. 2025 , Mannitol Market Size & Share Analysis - Growth Trends & Forecasts (2025-2030). [Accessed Sep. 30, 2025 ] . https://www.mordorintelligence.com/industry-reports/mannitol-market.
Avrami, M. Kinetics of phase change. I general theory. J. Chem. Phys. 1939 , 7 , 1103−1112..
Avrami, M. Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J. Chem. Phys. 1940 , 8 , 212−224..
Avrami, M. granulation, phase change, and microstructure kinetics o f phase change. III. J. Chem. Phys. 1941 , 9 , 177−184..
Lorenzo, A. T.; Arnal, M. L.; Albuerne, J.; Müller, A. J. DSC isothermal polymer crystallization kinetics measurements and the use of the Avrami equation to fit the data: guidelines to avoid common problems. Polym. Test. 2007 , 26 , 222−231..
Jiang, J.; Zhuralev, E.; Hu, W. B.; Schick, C.; Zhou, D. S. The effect of self-nucleation on isothermal crystallization kinetics of poly(butylene succinate) (PBS) investigated by differential fast scanning calorimetry. Chinese J. Polym. Sci. 2017 , 35 , 1009−1019..
Shi, X.; Li, Q.; Fu, G.; Jia, L. The effects of a polyol on the damping properties of EVM/PLA blends. Polym. Test. 2014 , 33 , 1−6..
Si, P.; Luo, F. Hydrogen bonding interaction and crystallization behavior of poly(butylene succinate- co -butylene adipate)/thiodiphenol complexes. Polym. Adv. Technol. 2016 , 27 , 1413−1421..
Ueda, A.S.; Chatani, Y.; Tadokoro, H. Structural studies of polyesters. IV. molecular and crystal structures of poly(ethylene succinate) and poly(ethylene oxalate). Polym. J. 1971 , 2 , 387−397..
Berman, H. M.; Jeffrey, G. A.; Rosenstein, R. D. The crystal structures of the α' and β forms of d-mannitol. Acta Cryst. B. 1968 , 24 , 442−449..
[Thierry, A.; Lotz, B. A. in: E. Piorkowska, John Wiley & Sons Inc., Hoboken, 2013 , p. 237-264.
Safari, M.; Kasmi, N.; Pisani, C.; Berthé, V.; Müller, A. J.; Habibi, Y. Effect of the structural features of biobased linear polyester plasticizers on the crystallization of polylactides. Int. J. Biol. Macromol. 2022 , 214 , 128−139..
Hasanoglu, Z.; Sivri, N.; Alanalp, M. B.; Durmus, A. Preparation of polylactic acid (PLA) films plasticized with a renewable and natural Liquidambar Orientalis oil. Int. J. Biol. Macromol. 2024 , 257 , 128631..
Luo, F. L.; Luo, F. H.; Xing, Q.; Zhang, X. Q.; Jiao, H. Q.; Yao, M.; Luo, C. T.; Wang, D. J. Hydrogen-bonding induced change of crystallization behavior of poly(butylene succi nate) in its mixtures with bisphenol A. Chinese J. Polym. Sci. 2013 , 31 , 1685−1696..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802046900号