

FOLLOWUS
a.Key Laboratory of Green Preparation and Application for Functional Materials of Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Material Science and Engineering, Hubei University, Wuhan 430062, China
b.Manchester Metropolitan Joint Institute, Hubei University, Wuhan 430062, China
c.Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518038, China
d.Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
e.Department of Radiology , Zhongnan Hospital of Wuhan University, Wuhan 430071, China
f.State Key Laboratory of Polymer Science and Technology, Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
g.Department of Chemistry and Chemical Engineering, SBA School of Science and Engineering, Lahore University of Management Sciences (LUMS). DHA, Lahore 54792, Pakistan
fanwen@hubu.edu.cn (W.F.)
shixd006@foxmail.com (X.D.S.)
willieyan2003@hubu.edu.cn (W.Y.)
Received:30 October 2025,
Accepted:16 December 2025,
Published Online:04 February 2026,
Published:15 March 2026
Scan QR Code
Gao, C.; Xiang, C. Y.; Guo, J. J.; Song, P. R.; Lu, Z. Y.; Xiao, C. S.; Hussain, I.; Fan, W.; Shi, X. D.; Yan, W. Superparamagnetic iron oxide nanoparticles prepared with multidentate thioether polymer ligand for magnetic resonance imaging. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3537-x
Chang Gao, Chen-Yang Xiang, Jiao-Jiao Guo, et al. Superparamagnetic Iron Oxide Nanoparticles Prepared with Multidentate Thioether Polymer Ligand for Magnetic Resonance Imaging[J/OL]. Chinese Journal of Polymer Science, 2026, 441-8.
Gao, C.; Xiang, C. Y.; Guo, J. J.; Song, P. R.; Lu, Z. Y.; Xiao, C. S.; Hussain, I.; Fan, W.; Shi, X. D.; Yan, W. Superparamagnetic iron oxide nanoparticles prepared with multidentate thioether polymer ligand for magnetic resonance imaging. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3537-x DOI:
Chang Gao, Chen-Yang Xiang, Jiao-Jiao Guo, et al. Superparamagnetic Iron Oxide Nanoparticles Prepared with Multidentate Thioether Polymer Ligand for Magnetic Resonance Imaging[J/OL]. Chinese Journal of Polymer Science, 2026, 441-8. DOI: 10.1007/s10118-025-3537-x.
Cancer has been recognized as one of the leading causes of mortality for decades. Magnetic resonance imaging (MRI) is a powerful imaging technology that has been widely applied in tumor diagnosis. Herein
we report the synthesis of magnetic iron oxide nanoparticles (MIONs) functionalized with multidentate thioether polymer ligand pentaerythritol tetrakis 3-mercaptopropionate-poly(methacrylic acid) (PTMP-PMAA). Cytotoxicity assessment
via
the CCK-8 assay confirmed the low toxicity of the nanoparticles. MRI results showed excellent negative contrast enhancement. Bio-distribution study indicated gradual excretion of the nanoparticles. These MIONs@PTMP-PMAA exhibit strong negative contrast enhancement and present great potential as
T
2
-weighted contrast agents for MRI.
Chen, X. Biomedical polymers—escort for human health. Chinese J. Polym. Sci. 2022 , 40 , 1004..
Ji, S.; Lan, H.; Zhou, S.; Zhang, X.; Chen, W.; Jiang, X. Ir(III)-based ratiometric hypoxic probe for cell imaging. Chinese J. Polym. Sci. 2023 , 41 , 794−801..
Wang, H.; Dai, T.; Lu, B.; Li, S.; Lu, Q.; Mukwaya, V.; Dou, H. Hybrid dextran-gadolinium nano-suitcases as high-relaxivity MRI contrast agents. Chinese J. Polym. Sci. 2018 , 36 , 391−398..
Chen, J.; Shen, Y.; Yu, Q.; Gan, Z. Paclitaxel prodrug nanomedicine for potential CT-imaging guided breast cancer therapy. Chinese J. Polym. Sci. 2023 , 41 , 1747−1759..
Ma, Z.; Li, D.; Jia, X.; Wang, R.; Zhu, M. Recent advances in bio-inspired versatile polydopamine platforms for “smart” cancer photothermal t herapy. Chinese J. Polym. Sci. 2023 , 41 , 699−712..
Gao, H.; Zhang, J.; Qi, X.; Jiao, D.; Hong, Y.; Shan, K.; Kong, X.; Ding, D. Polymerization-amplified photoacoustic signal by enhancing near-infrared light-harvesting capacity and thermal-to-acoustic conversion. Chinese J. Polym. Sci. 2022 , 40 , 1090−1100..
Xie, W.; Gan, Y.; Wang, L.; Si, Y.; Li, Q.; Song, T.; Wei, P.; Wu, Z.; Zhang, G. Tumor microenvironment–activated nanostructure to enhance MRI capability and nanozyme activity for highly tumor-specific multimodal theranostics. Small 2024 , 20 , 2306446..
Hou, J.; Liu, H.; Ma, Q.; Xu, S.; Wang, L. Coordination-driven self-assembly of iron oxide nanoparticles for tumor microenvironment-responsive magnetic resonance imaging. Anal. Chem. 2022 , 94 , 15578−15585..
Deng, L.; Jiang, H.; Lu, F.; Wang, H.; Pu, Y.; Wu, C.; Tang, H.; Xu, Y.; Chen, T.; Zhu, J. Size and PEG length-controlled PEGylated monocrystalline superparamagnetic iron oxide nanocomposite for MRI contrast agent. Int. J. Nanomed. 2021 , 16 , 201−211..
Wang, R.; Huang, S.; Zhang, Q.; Yu, X.; Hong, K.; Cao, J.; Xiao, H.; Wang, Y.; Shuai, X. Construction of magnetic resonance imaging visible polymeric vector for efficient tumor targeted siRNA delivery. Chinese J. Polym. Sci. 2022 , 40 , 1071−1079..
Huo, L.; Zeng, J.; Wang, Z.; Sun, X.; Guo, Y.; Cao, Z.; Zhu, S.; Tan, M.; Li, M.; Chen, X. Magnetic field-optimized paramagnetic nanoprobe for T 2 /T 1 switchable histopathological-level MRI. ACS Nano 2024 , 18 , 12453−12467..
Liu, M.; Yuan, J.; Wang, G.; Ni, N.; Lv, Q.; Liu, S.; Gong, Y.; Zhao, X.; Wang, X.; Sun, X. Shape programmable T 1 –T 2 dual-mode MRI nanoprobes for cancer theranostics. Nanoscale 2023 , 15 , 4694−4724..
Wang, G.; Wang, L.; Wei, Z.; Sang, L.; Dong, X.; Qi, M.; Chen, G.; Chang, Y.; Zhang, W. Synthesis and characterization of poly(ɛ-caprolactone)/ Fe 3 O 4 nanocomposites by in situ polymerization. Chinese J. Polym. Sci. 2013 , 31 , 1011−1021..
Lin, H.; Tang, X.; Li, A.; Gao, J. Activatable 19F MRI nanoprobes for visualization of biological targets in living subjects. Adv. Mater. 2021 , 33 , 2005657..
Sokolow,G. E.; Crawley, M. R.; Morphet, D. R.; Asik, D.; Spernyak, J. A.; McGray, A. R.; Cook, T. R.; Morrow, J. R. Metal−organic polyhedron with four Fe(III) centers producing enhanced T 1 magnetic resonance imaging contrast in tumors. Inorg. Chem. 2022 , 61 , 2603−2611..
Jeon, M.; Halbert, M. V.; Stephen, Z. R.; Zhang, M. Iron oxide nanoparticles as T 1 contrast agents for magnetic resonance imaging: fundamentals, challenges, applications, and prospectives. Adv. Mater. 2021 , 33 , 1906539..
Pucci, C.; Degl'Innocenti, A.; Gümüş, M. B.; Ciofani, G. Superparamagnetic iron oxide nanoparticles for magnetic hyperthermia: recent advancements, molecular effects, and future directions in the omics era. Biomater. Sci. 2022 , 10 , 2103−2121..
[Wu, X.; Zhao, X.; Liu, J. Advances in surface materials for resisting snow and freezing disasters. Chinese J. Polym. Sci . 2025 , 1-21 ..
Zhao, S.; Yu, X.; Qian, Y.; Chen, W.; Shen, J. Multifunctional magneti c iron oxide nanoparticles: an advanced platform for cancer theranostics. Theranostics 2020 , 10 , 6278..
Patsula, V.; Kosinová, L.; Lovrić, M.; Ferhatovic Hamzić, L.; Rabyk, M.; Konefal, R.; Paruzel, A.; Šlouf, M.; Herynek, V.; Gajović, S. Superparamagnetic Fe 3 O 4 nanoparticles: synthesis by thermal decomposition of iron(III) glucuronate and application in magnetic resonance imaging. ACS Appl. Mater. Interfaces 2016 , 8 , 7238−7247..
Gong, F.; Zhang, Z.; Chen, X.; Zhang, L.; Yu, X.; Yang, Q.; Shuai, X.; Liang, B.; Cheng, D. A dual ligand targeted nanoprobe with high MRI sensitivity for diagnosis of breast cancer. Chinese J. Polym. Sci. 2014 , 32 , 321−332..
Majeed, M. I.; Lu, Q.; Yan, W.; Li, Z.; Hussain, I.; Tahir, M. N.; Tremel, W.; Tan, B. Highly water-soluble magnetic iron oxide (Fe 3 O 4 ) nanoparticles for drug delivery: enhanced in vitro therapeutic efficacy of doxorubicin and MION conjugates. J. Mater. Chem. B 2013 , 1 , 2874−2884..
Su, L.; Liu, Y.; Li, Y.; An, Y.; Shi, L. Responsive polymeric nanoparticles for biofilm-infection control. Chinese J. Polym. Sci. 2021 , 39 , 1376−1391..
Abed, A.; Bouazizi, N.; Giraud, S.; El Achari, A.; Campagne, C.; Thoumire, O.; El Moznine, R.; Cherkaoui, O.; Vieillard, J.; Azzouz, A. Polyester-supported chitosan-poly(vinylidene fluoride)-inorganic-oxide-nanoparticles composites with improved flame retardancy and thermal stability. Chinese J. Polym. Sci. 2020 , 38 , 84−91..
Li, Z.; Chen, H.; Bao, H.; Gao, M. One-pot reaction to synthesize water-soluble magnetite nanocrystals. Chem. Mater. 2004 , 16 , 1391−1393..
Li, Z.; Yi, P.; Sun, Q.; Lei, H.; Li Zhao, H.; Zhu, Z.; Smith, S. C.; Lan, M.; Lu, G. Ultrasmall water-soluble and biocompatible magnetic iron oxide nanoparticles as positive and negative dual contrast agents. Adv. Funct. Mater. 2012 , 22 , 2387−2393..
Li, Z.; Wang, S.; Sun, Q.; Zhao, H.; Lei, H.; Lan, M.; Cheng, Z.; Wang, X.; Dou, S.; Lu, G. Ultrasmall manganese ferrite nanoparticles as positive contrast agent for magnetic resonance imaging. Adv. Healthcare Mater. 2013 , 2 , 958−964..
Magro, M.; Cozza, G.; Molinari, S.; Venerando, A.; Baratella, D.; Miotto, G .; Zennaro, L.; Rossetto, M.; Frömmel, J.; Kopečná, M. Role of carboxylic group pattern on protein surface in the recognition of iron oxide nanoparticles: a key for protein corona formation. Int. J. Biol. Macromol. 2020 , 164 , 1715−1728..
Yu, S.; Chow, G. M. Carboxyl group (–CO 2 H) functionalized ferrimagnetic iron oxide nanoparticles for potential bio-applications. J. Mater. Chem. 2004 , 14 , 2781−2786..
[Jin, Z.; Xie, L.; Bao, K.; Xu, J.; Feng, L.; Guo, Y.; Wang, M.; Zheng, D.; Song, L.; Zhang, W. Preparation of superparamagnetic iron oxide nanoparticles conjugated hollow gold nanospheres for MR/CT dual-mode imaging and synergistic photothermal-chemotherapy of cancer. J. Sci.: Adv. Mater. Devices 2025 , 10 , 100977..
Ansari, S. R.; Grimm, D.; Ramachandran, R. V.; del Carmen Suárez-López, Y.; Juriga-Tóth, K.; Sotiriou, G. A.; Teleki, A. Magnetic microfiber hyperthermia for synergistic antimicrobial activity against methicillin-resistant Staphylococcus aureus. Mater. Today Bio 2025 , 32 , 101862..
Lu, Y.; Xu, Y.; Zhang, G.; Ling, D.; Wang, M.; Zhou, Y.; Wu, Y.; Wu, T.; Hackett, M. J.; Kim, B. H. Iron oxide nanoclusters for T 1 magnetic resonance imaging of non-human primates. Nat. Biomed. Eng. 2017 , 1 , 637−643..
Du, H.; Yu, J.; Guo, D.; Yang, W.; Wang, J.; Zhang, B. Improving the MR imaging sensitivity of upconversion nanoparticles by an internal and external incorporation of the Gd 3+ strategy for in vivo tumor-targeted imaging. Langmuir 2016 , 32 , 1155−1165..
Wang, Y.; Hussain, S. M.; Krestin, G. P. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur. Radiol. 2001 , 11 , 2319−2331..
Zhang, L.; Tong, S.; Zhang, Q.; Bao, G. Lipid-encapsulated Fe 3 O 4 nanoparticles for multimodal magnetic resonance/fluorescence imaging. ACS Appl. Nano Mater. 2020 , 3 , 6785−6797..
Lee, J.; Huh, Y.; Jun, Y.; Seo, J.; Jang, J.; Song, H.; Kim, S.; Cho, E.; Yoon, H.; Suh, J. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med. 2007 , 13 , 95−99..
Coey, J. M. D. Noncollinear spin arr angement in ultrafine ferrimagnetic crystallites. Phys. Rev. Lett. 1971 , 27 , 1140..
Jun, Y.; Huh, Y.; Choi, J.; Lee, J.; Song, H.; Kim, S.; Yoon, S.; Kim, K.; Shin, J.; Suh, J. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J. Am. Chem. Soc. 2005 , 127 , 5732−5733..
Park, J.; An, K.; Hwang, Y.; Park, J.; Noh, H.; Kim, J.; Park, J.; Hwang, N.; Hyeon, T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004 , 3 , 891−895..
Morales, M. P.; Veintemillas-Verdaguer, S.; Montero, M.; Serna, C.; Roig, A.; Casas, L.; Martinez, B.; Sandiumenge, F. Surface and internal spin canting in γ-Fe 2 O 3 nanoparticles. Chem. Mater. 1999 , 11 , 3058−3064..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802046900号