

FOLLOWUS
a.State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
b.School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
c.School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
d.School of Material Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
wuchunji@ciac.ac.cn (C.J.W.)
wang@ciac.ac.cn (B.L.W.)
Received:19 November 2025,
Accepted:15 December 2025,
Published Online:02 February 2026,
Published:15 March 2026
Scan QR Code
Zhang, S. N.; Huang, L. Y.; He, P.; Wu, C. J.; Wang, B. L. Preparation of cyclic olefin copolymers with high glass-transition temperature via ethylene/dicyclopentadiene copolymerization and subsequent hydrogenation. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3534-0
Shu-Nan Zhang, Ling-Yan Huang, Pan He, et al. Preparation of Cyclic Olefin Copolymers with High Glass-transition Temperature
Zhang, S. N.; Huang, L. Y.; He, P.; Wu, C. J.; Wang, B. L. Preparation of cyclic olefin copolymers with high glass-transition temperature via ethylene/dicyclopentadiene copolymerization and subsequent hydrogenation. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3534-0 DOI:
Shu-Nan Zhang, Ling-Yan Huang, Pan He, et al. Preparation of Cyclic Olefin Copolymers with High Glass-transition Temperature
Cyclic olefin copolymers (COCs) are highly valuable optical resins
but their productions
on industry are fully limited by the monomer norbornene. Although ethylene/dicyclopentadiene (E/DCPD) copolymers provide a cost-effective alternative to commercially available COCs because of using low-cost DCPD as cyclic olefin monomer
these inherent unsaturated double bonds on E/DCPD copolymers cause low heat resistance
oxidation
and crosslinking during processing and storage. And E/DCPD copolymers usually showed lower glass-transition temperature (
T
g
) compared with commercially available COCs. In this study
we studied the E-DCPD copolymerization catalyzed by a scandium complex and the sequential hydrogenation catalyzed by a nickel compound to prepare saturated copolymers H-(E/DCPD). The polymerization activities are high up to 5.86
$$\times $$
http://notExist.jpg
http://notExist.jpg
http://notExist.jpg
10
6
g/(mol
Sc
·h)
and the resultant H-(E/DCPD) copolymers showed narrow polymer dispersity index (PDI=1.5–2.0). By changing the polymerization conditions
a series of H-(E/DCPD) copolymers with tunable DCPD incorporation (28.4 mol%–44.9 mol%) and a wide range of
T
g
(123–171 °C) were obtained. H-(E/DCPD) copolymers exhibited excellent optical properties (transparency
>
90%
refractive index of 1.543)
similar to those of commercial COCs
making them an alternative for high-performance optical applications. This method solves the problems of traditional E/DCPD copolymers and provides a practical way to produce stable and low-cost COCs
and is comparable with commercially available COC resins.
Li, X.; Hou, Z. Organometallic catalysts for copolymerization of cyclic olefins. Coord. Chem. Rev. 2008 , 252 , 1842−1869..
Nunes, P. S.; Ohlsson, P. D.; Ordeig, O.; Kutter, J. P. Cyclic olefin polymers: emerging materials for lab-on-a-chip applications. Microfluid. Nanofluid. 2010 , 9 , 145−161..
Lago, W. S. R.; Aymes-Chodur, C.; Ahoussou, A. P.; Yagoubi, N. Physico-chemical ageing of ethylene-norborn ene copolymers: a review. J. Mater. Sci. 2017 , 52 , 6879−6904..
Zhang, J.; Zhang, Y.; Cui, L.; Jian, Z. Fluorinated cyclic olefin copolymers (COCs) and cyclic olefin polymers (COPs). Macromol. Rapid Commun. 2025 , 46 , 2400906..
Zhang, Y.; Guo, J.; Zhang, K.; Ma, X.; Cao, D.; Bai, S.; Yuan, X.; Pan, L.; Sun, J.; Li, Y. Robust ionic cyclic olefin polymers with excellent transparency, barrier properties, and antibacterial properties. Macromolecules 2023 , 56 , 4371−4385..
Yuan, H.; Kida, T.; Ishitobi, Y.; Tanaka, R.; Yamaguchi, M.; Nakayama, Y.; Shiono, T. Cyclic olefin copolymer bearing pendant fluorenyl groups with high refractive index and low Chromatic dispersion. Macromolecules 2021 , 55 , 125−132..
Tritto, I.; Boggioni, L.; Ferro, D. R. Metallocene catalyzed ethene- and propene co-norbornene polymerization: mechanisms from a detailed microstructural analysis. Coord. Chem. Rev. 2006 , 250 , 212−241..
[TOPAS COC polymers. [accessed 2019 Sep.]https://topas.com/products/topas-coc-polymers.
[Cyclo olefin copolymer. [accessed 2020 Jun.]https://us.mitsuichemicals.com/service/product/apel/index.htm.
[Cyclo olefin polymer. [accessed 2019 Aug.]https://www.zeon.co.jp/en/business/enterprise/resin/cop/.
Joshel, L. M.; Butz, L. W. The synthesis of condensed ring compounds. VII. the successful use of ethylene in the Diels-Alder reaction. J. Am. Chem. Soc. 1941 , 63 , 3350−3351..
[Hill, A. B.; Maisel, D. S.; Wood, D. W. 1961 , U.S. Pat., 75,992,958A
[Lorette, N. B.; Jackson, L. 1973 , U.S. Pat., 3,766,283DA.
[Wing, M. S.; Mathews, G. W.; Jackson, L. 1973 , U.S. Pat., 3,763,253DA.
Palmova, I.; Kosek, J.; Schongut, J.; Marek, M.; Stepanek, K. Experimental and modeling studies of oligomerization and copolymerization of dicyclopentadiene. Chem. Eng. Sci. 2001 , 56 , 927−935..
Wang, L.; Dong, S.; Tian, H.; Gong, G.; Wang, B.; Wu, C.; Cui, D. Terpolymerization of ethylene, norbornene and dicyclopentadiene catalyzed by modified cyclopentadienyl scandium complexes. Polym. Chem. 2023 , 14 , 3110−3116..
Dong, S.; Duan, X.; Nan, T.; Lin, C.; Liu, B.; Cui, D. Substituent effect of styryl monomers on composition and property enhancement of dicyclopentadiene-based cycloolefin copolymers. Macromolecules 2023 , 56 , 8912−8919..
Wang, W.; Chen, M.; Pang, W.; Li, Y.; Zou, C.; Chen, C. Palladium-catalyzed synthesis of norbornene-based polar-functionalized polyolefin elastomers. Macromolecules 2021 , 54 , 3197−3203..
[Li, X.; Nishiura, M.; Mori, K.; Mashiko, T.; Hou, Z. Cationic scandium aminobenzyl complexes. Synthesis, structure and unprecedented catalysis of copolymerization of 1-hexene and dicyclopentadiene. Chem. Commun . 2007 , 4137−4139..
Hong, M.; Pan, L.; Ye, W. P.; Song, D. P.; Li, Y. S. Facile, efficient functionalization of polyethylene via regioselective copolymerization of ethylene with cyclic dienes. J. Polym. Sci., Part A:Polym. Chem. 2010 , 48 , 1764−1772..
Suzuki, J.; Kino, Y.; Uozumi, T.; Sano, T.; Teranishi, T.; Jin, J.; Soga, K.; Shiono, T. Synthesis and functionalization of poly(ethylene-co-dicyclopentadiene). J. Appl. Polym. Sci. 1999 , 72 , 103−108..
Simanke, A. G.; Mauler, R. S.; Galland, G. B. Ethylene copolymerization with cyclic dienes using rac -Et[Ind ] 2 ZrCl 2 -Methylaluminoxane. J. Polym. Sci., Part A:Polym. Chem. 2002 , 40 , 471−485..
Naga, N. Copolymerization of ethylene with cycloolefins or cyclodiolefins by a constrained-geometry catalyst. J. Polym. Sci., Part A:Polym. Chem. 2005 , 43 , 1285−1291..
Nishii, K.; Hayano, S.; Tsunogae, Y.; Cai, Z.; Nakayama, Y.; Shiono, T. Highly active copolymerization of ethylene and dicyclopentadiene with [(η 1 - t -BuN)SiMe 2 (η 1 -C 29 H 36 ) ] TiMe 2 (THF) complex. Chem. Lett. 2008 , 37 , 590−591..
Gao, M. L.; Sun, X. L.; Gu, Y. F.; Yao, X. L.; Li, C. F.; Bai, J. Y.; Wang, C.; Ma, Z.; Tang, Y.; Xie, Z.; Bu, S. Z.; Qian, C. Copolymerization of ethylene with cycloolefins by titanium complexes containing tridentate [O - NS R ] ligands. J. Polym. Sci., Part A:Polym. Chem. 2008 , 46 , 2807−2819..
Hasan, T.; Ikeda, T.; Shiono, T. Homo- and copolymerization of norbornene derivatives with ethene by ansa-fluorenylamidodimethyltitanium activated with methylaluminoxane. J. Polym. Sci., Part A:Polym. Chem. 2007 , 45 , 4581−4587..
Pan, L.; Hong, M.; Liu, J. Y.; Ye, W. P.; Li, Y. S. Living copolymerization of ethylene with dicyclopentadiene using titanium catalyst: formation of well-defined polyethylene- block -poly(ethylene- co -dicyclopentadiene)s and their transformation into novel polyolefin- block -(functional polyolefin)s. Macromolecules 2009 , 42 , 4391−4393..
Lu, C. S.; Zhang, Y. T.; Mu, Y. Copolymerization of ethylene with dicyclopentadiene using a constrained geometry cyclopentadienyl-phenoxytitanium cat alyst. Chem. Res. Chin. Univ. 2007 , 23 , 31−34..
Li, X.; Hou, Z. Scandium-catalyzed copolymerization of ethylene with dicyclopentadiene and terpolymerization of ethylene, dicyclopentadiene, and styrene. Macromolecules 2005 , 38 , 6767−6769..
Dougnac, V. N.; Quijada, R.; Palza, H.; Galland, G. B. A study of the synthesis and characterization of ethylene/dicyclopentadiene copolymers using a metallocene catalyst. Eur. Polym. J. 2009 , 45 , 102−106..
Na, S. J.; Wu, C. J.; Yoo, J.; Kim, B. E.; Lee, B. Y. Copolymerization of 5,6-dihydrodicyclopentadiene and ethylene. Macromolecules 2008 , 41 , 4055−4057..
Huang, L.; Zhang, S.; Wu, C.; He, P.; Wang, B. Copolymerization of tricyclopentadiene and ethylene catalyzed by thiophene-fused-heterocyclic cyclopentadienyl scandium complexes. Polym. Chem. 2024 , 15 , 2121−2128..
Zhang, X. H.; Mao, X. H.; Gao, H.; Luo, S. Y.; Ma, Z.; Pan, L.; Li, Y. S. Preparation and hydrogenation of dicyclopentadiene-based cyclic olefin copolymers. Chinese J. Polym. Sci. 2025 , 43 , 1527−1536..
Chen, R.; Yao, C.; Wang, M.; Xie, H.; Wu, C.; Cui, D. Synthesis of heterocyclic-fused cyclopentadienyl scandium complexes and the catalysis for copolymerization of ethylene and dicyclopentadiene. Organometallics 2015 , 34 , 455−461..
Wang, Y.; Sun, R.; Liang, J.; Zhang, Y.; Tan, B.; Deng, C.; Wang, Y. H.; Wang, B. W.; Gao, S.; Huang, W. Synthesis and stabilization of a benzene dianion with a triplet ground state and baird aromaticity. J. Am. Chem. Soc. 2025 , 147 , 7741−7748..
[Kawatsu, M.; Fujioka, T.; Losio, S.; Tritto, I.; Nomura, K. (Trialkylsilyl-cyclopentadienyl)titanium(iv) dichloride complexes containing ketimide ligands, Cp′TiCl 2 (N═CtBu 2 ) (Cp′ = Me 3 SiC 5 H 4 , Et 3 SiC 5 H 4 ), as efficient catalysts for ethylene copolymerisation with norbornene and tetracyclododecene. Catal. Sci. Technol . 2025 , 15 , 2757−2765..
Li, K.; Cui, L.; Zhang, Y.; Jian, Z. Amide-functionalized polyolefins and facile post-transformations. Macromolecules 2023 , 56 , 915−922..
Dong, S.; Cai, L.; Han, Z.; Liu, B.; Cui, D. CGC-scandium-mediated copolymerization of ethylene with amine-functionalized cyclic olefins. ACS Catal. 2024 , 14 , 15565−15571..
Zhang, Q.; Lin, W.; Ning, Z.; Wang, Y.; Ma, Y.; Solan, G. A.; Liang, T.; Sun, W. H. Bimodal and highly branched polyethylenes using dual-site nickel catalysts supported on an unsymmetrical BIAN-PI compartmental ligand scaffold. Macromolecules 2024 , 57 , 1087−1105..
Wang, F.; Huang, D.; Gao, H.; Wang, F.; Pan, L.; Li, Y. Synthesis of bimodal distributed cyclic olefin copolymers with improved tensile properties. Chin. J. Chem. 2022 , 40 , 1931−1938..
Harakawa, H.; Okabe, M.; Nomura, K. The synthesis of cyclic olefin copolymers (COCs) by ethylenecopolymerisations with cyclooctene, cycloheptene, and with tricyclo[6.2.1.0(2,7) ] undeca-4-ene: the effects of cyclic monomer structures on thermal properties. Polym. Chem. 2020 , 11 , 5590−5600..
Okabe, M.; Nomura, K. Propylene/cyclic olefin copolymers with cyclopentene, cyclohexene, cyclooctene, tricyclo[6.2.1.0(2,7) ] undeca-4 -ene, and tetracyclododecene: the synthesis and effect of cyclic structure on thermal properties. Macromolecules 2022 , 56 , 81−91..
Wang, W.; Qu, S.; Li, X.; Chen, J.; Guo, Z.; Sun, W. H. Transition metal complex catalysts promoting copolymers of cycloolefin with propylene/higher olefins. Coord. Chem. Rev. 2023 , 494 , 215351..
Li, K.; Cui, L.; Zhang, Y.; Jian, Z. Synthesis and chemical transformation of nitrogen-rich polyolefins through copolymerization of ethylene with polar cyclic olefins. Macromolecules 2025 , 58 , 9412−9419..
Zhao, W.; Nomura, K. Copolymerizations of norbornene and tetracyclododecene with α-olefins by half-titanocene catalysts: efficient synthesis of highly transparent, thermal resistance polymers. Macromolecules 2015 , 49 , 59−70..
Wang, H. M.; Suslick, B. A.; Lessard, J. J.; Yu, C. H.; Saengow, C.; Ewoldt, R. H.; Moore, J. S. Frontal polymerization of stereoisomers: distinct microstructures and properties in endo- and exo-dicyclopentadiene thermosets. Macromolecules 2023 , 57 , 142−149..
Zhao, Y.; Zhang, Y.; Cui, L.; Jian, Z. Cyclic olefin terpolymers with high refractive index and high optical transparency. ACS Macro Lett. 2023 , 12 , 395−400..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802046900号