

FOLLOWUS
a.Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
b.University of Chinese Academy of Sciences, Beijing 100049, China
zhaozhiyuan@iccas.ac.cn (Z.Y.Z.)
guoyunlong@iccas.ac.cn (Y.L.G.)
liuyq@iccas.ac.cn (Y.Q.L.)
Received:29 October 2025,
Revised:2025-11-30,
Accepted:03 December 2025,
Published Online:02 February 2026,
Published:2025-12
Scan QR Code
Yang, Z.; Shi, W. K.; Shao, Z. H.; Xiong, Z. H.; Li, Y. F.; Zhu, M. L.; Wen, W.; Li, C.; Ren, L. B.; Zhao, Z. Y.; Guo, Y. L.; Liu, Y. Q. Elastomer doping strategy for high-efficiency stretchable thermally activated delayed fluorescence polymer organic light-emitting diodes. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3525-1
Zhao Yang, Wen-Kang Shi, Zhi-Hao Shao, et al. Elastomer Doping Strategy for High-efficiency Stretchable Thermally Activated Delayed Fluorescence Polymer Organic Light-emitting Diodes[J/OL]. Chinese Journal of Polymer Science, 2025, 441-10.
Yang, Z.; Shi, W. K.; Shao, Z. H.; Xiong, Z. H.; Li, Y. F.; Zhu, M. L.; Wen, W.; Li, C.; Ren, L. B.; Zhao, Z. Y.; Guo, Y. L.; Liu, Y. Q. Elastomer doping strategy for high-efficiency stretchable thermally activated delayed fluorescence polymer organic light-emitting diodes. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3525-1 DOI:
Zhao Yang, Wen-Kang Shi, Zhi-Hao Shao, et al. Elastomer Doping Strategy for High-efficiency Stretchable Thermally Activated Delayed Fluorescence Polymer Organic Light-emitting Diodes[J/OL]. Chinese Journal of Polymer Science, 2025, 441-10. DOI: 10.1007/s10118-025-3525-1.
The increasing demand for flexible displays and wearable electronics has driven extensive efforts to develop stretchable organic light-emitting diodes (OLEDs). A critical challenge in this field is the creation of emissive layers that combine high efficiency with mechanical robustness. Thermally activated delayed fluorescence (TADF) materials have attracted significant attention as third-generation emitters capable of achieving 100% internal quantum efficiency; however
their application in stretchable OLEDs has been limited. In this study
we propose an elastomer doping strategy. Polyurethane (PU) is incorporated into TADF polymers to improve their mechanical flexibility while maintaining a high luminescent efficiency. The resulting composite films exhibited excellent TADF characteristics and remarkable stretchability (75%). OLEDs fabricated from these materials achieved a maximum external quantum efficiency (EQE) of 14.26% and a peak luminance of 73570 cd·m
–2
with the PU-doped devices showing a significantly suppressed efficiency roll-off. Additionally
a fully stretchable OLED architecture was designed and operated under tensile strain to maintain stable electroluminescent performance. These results demonstrate that elastomer doping is an effective strategy for balancing the mechanical compliance with optoelectronic performance
offering a promising pathway for the development of high-performance stretchable OLEDs for flexible electronics.
Shi, X.; Zuo, Y.; Zhai, P.; Shen, J.; Yang, Y.; Gao, Z.; Liao, M.; Wu, J.; Wang, J.; Xu, X.; Tong, Q.; Zhang, B.; Wang, B.; Sun, X.; Zhang, L.; Pei, Q.; Jin, D.; Chen, P.; Peng, H. Large-area display textiles integrated with functional systems. Nature 2021 , 591 , 240−245..
Kim, R. H.; Kim, D. H.; Xiao, J.; Kim, B. H.; Park, S. I.; Panilaitis, B.; Ghaffari, R.; Yao, J.; Li, M.; Liu, Z.; Malyarchuk, V.; Kim, D. G.; Le, A. P.; Nuzzo, R. G.; Kaplan, D. L.; Omenetto, F. G.; Huang, Y.; Kang, Z.; Rogers, J. A. Waterproof alingap optoelectronics on stretchable substrates with applications in biomedicine and robotics. Nat. Mater. 2010 , 9 , 929−937..
Choi, S.; Na, Y.; Lee, J.; Choi, K. C. 41.1: invited paper : [invited ] Textile-OLEDs with high wearing comfort used for fashion displays and phototherapy applications. SID Symp. Dig. Tech. Pap. 2021 , 52 , 279−279..
Yu, H.; Kim, J.; Kim, H.; Barange, N.; Jiang, X.; So, F. Direct acoustic imaging using a piezoelectric organic light-emitting diode. ACS Appl. Mater. Interfaces 2020 , 12 , 36409−36416..
Liang, J.; Li, L.; Tong, K.; Ren, Z.; Hu, W.; Niu, X.; Chen, Y.; Pei, Q. Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes. ACS Nano 2014 , 8 , 1590−1600..
[Kim, J. H.; Park, J. W. Intrinsically stretchable organic light-emitting diodes. Sci. Adv . 2021 , 7 , eabd9715..
Gao, H.; Chen, S.; Liang, J.; Pei, Q. Elastomeric light emitting polymer enhanced by interpenetrating networks. ACS Appl. Mater. Interfaces 2016 , 8 , 32504−32511..
Thompson, A. J.; Chong, B. S. K.; Kenny, E. P.; Evans, J. D.; Powell, J. A.; Spackman, M. A.; McMurtrie, J. C.; Powell, B. J.; Clegg, J. K. Origins of elasticity in molecular materials. Nat. Mater. 2025 , 24 , 356−360..
Patel, N. K.; Cina, S.; Burroughes, J. H. High-efficiency organic light-emitting diodes. IEEE J. Sel. Top. Quantum Electron. 2002 , 8 , 346−361..
[Xu, J.; Wang, S.; Wang, G. J. N.; Zhu, C.; Luo, S.; Jin, L.; Gu, X.; Chen, S.; Feig, V. R.; To, J. W. F.; Rondeau-Gagné, S.; Park, J.; Schroeder, B. C.; Lu, C.; Oh, J. Y.; Wang, Y.; Kim, Y. H.; Yan, H.; Sinclair, R.; Zhou, D.; Xue, G.; Murmann, B.; Linder, C.; Cai , W.; Tok, J. B. H.; Chung, J. W.; Bao, Z. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 2017 , 355 , 59–64..
Baldo, M. A.; O’Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 1998 , 395 , 151−154..
Lee, J.; Chen, H. F.; Batagoda, T.; Coburn, C.; Djurovich, P. I.; Thompson, M. E.; Forrest, S. R. Deep blue phosphorescent organic light-emitting diodes with very high brightness and efficiency. Nat. Mater. 2016 , 15 , 92−98..
Li, H.; Chen, C.; Ye, Z.; Feng, K.; Huang, J.; Xie, G.; Tao, Y. Purely organic room temperature phosphorescent materials toward organic light-emitting diodes. FlexMat 2024 , 1 , 173−192..
Pei, R.; Xu, Y.; Miao, J.; Peng, H.; Chen, Z.; Zhou, C.; Liu, H.; Yang, C. A tetrahedral bisacridine donor enables fast radiative decay in thermally activated delayed fluorescence emitter. Angew. Chem. Int. Ed. 2023 , 62 , e202217080..
Zhang, C.; Lu, Y.; Liu, Z.; Zhang, Y.; Wang, X.; Zhang, D.; Duan, L. A π–d and π–a exciplex-forming host for high-efficiency and long-lifetime single-emissive-layer fluorescent white organic light-emitting diodes. Adv. Mater. 2020 , 32 , 2004040..
Lee, H.; Braveenth, R.; Muruganantham, S.; Jeon, C. Y.; Lee, H. S.; Kwon, J. H. Efficient pure blue hyperfluorescence devices utilizing quadrupolar donor-acceptor-donor type of thermally activated delayed fluorescence sensitizers. Nat. Commun. 2023 , 14 , 419..
Xiao, Y.; Xie, Z.; Shen, M.; Wang, H.; Li, J.; Huang, R.; Yu, T. Construction of multi-decay pathways and realizing polymer-regulated organic smart luminescent materials. FlexMat 2024 , 1 , 193−202..
Rao, J.; Liu, X.; Li, X.; Yang, L.; Zhao, L.; Wang, S.; Ding, J.; Wang, L. Bridging small molecules to conjugated polymers: efficient thermally activated delayed fluorescence with a methyl-substituted phenylene linker. Angew. Chem. Int. Ed. 2020 , 59 , 1320−1326..
[Liu, Y.; Yan, S.; Ren, Z. π-conjugated polymeric light emitting diodes with sky-blue emission by employing thermally activated delayed fluorescence mechani sm. Chem. Eng. J . 2021 , 417 , 128089..
Liu, Y.; Xie, G.; Ren, Z.; Yan, S. Thermally activated delayed fluorescence polymer emitters with tunable emission from yellow to warm white regulated by triphenylamine derivatives. ACS Appl. Polym. Mater. 2019 , 1 , 2204−2212..
Guo, Y.; Zhao, J.; Chen, L.; Zhao, H.; Li, S.; Liu, Y.; Yan, S.; Ren, Z. Constructing intramolecular locks in the backbones of tadf conjugated polymers for high-performance solution-processed oleds. Small 2025 , 21 , 2502892..
Liu, S.; Tian, Y.; Yan, L.; Wang, S.; Zhao, L.; Tian, H.; Ding, J.; Wang, L. Color tuning in thermally activated delayed fluorescence polymers with carbazole and tetramethylphenylene backbone. Macromolecules 2023 , 56 , 876−882..
Yang, Y.; Zhao, L.; Wang, S.; Ding, J.; Wang, L. Red-emitting thermally activated delayed fluorescence polymers with poly(fluorene- co -3,3′-dimethyl diphenyl ether) as the backbone. Macromolecules 2018 , 51 , 9933−9942..
Liu, Y.; Wang, Y.; Li, C.; Ren , Z.; Ma, D.; Yan, S. Efficient thermally activated delayed fluorescence conjugated polymeric emitters with tunable nature of excited states regulated via carbazole derivatives for solution-processed oleds. Macromolecules 2018 , 51 , 4615−4623..
Wang, T.; Yao, B.; Li, K.; Chen, Y.; Zhan, H.; Yi, X.; Xie, Z.; Cheng, Y. Backbone-acceptor/pendant-donor strategy for efficient thermally activated delayed fluorescence conjugated polymers with external quantum efficiency close to 25% and emission peak at 608 nm. Adv. Opt. Mater. 2021 , 9 , 2001981..
Liu, Y.; Xie, Y.; Hua, L.; Li, S.; Tong, X.; Ying, S.; Yan, S.; Ren, Z. High-Efficiency tadf polymers with a spatially confined conjugated backbone enable solution-processable blue oleds realizing over 20% EQE. Adv. Opt. Mater. 2024 , 12 , 2301811..
Hua, L.; Liu, Y.; Zhao, H.; Chen, S.; Zhang, Y.; Yan, S.; Ren, Z. Constructing high-efficiency orange-red thermally activated delayed fluorescence polymers by excited state energy levels regulation via backbone engineering. Adv. Funct. Mater. 2023 , 33 , 2303384..
Wang, T.; Zou, Y.; Huang, Z.; Li, N.; Miao, J.; Yang, C. Narrowband emissive tadf conjugated polymers towards highly efficient solution-processible oleds. Angew. Chem. Int. Ed. 2022 , 61 , e202211172..
Wang, T.; Huang, Z.; Zhang, H.; Miao, J.; Yang, C. Multi-Resonance tadf conjugated polymers toward highly efficient solution-processible narrowband green oleds. Adv. Funct. Mater. 2024 , 34 , 2408119..
Luo, W.; Wang, T.; Huang, Z.; Huang, H.; Li, N.; Yang, C. Blue tadf conjugated polymers with multi-resonance feature toward solution-processable narrowband blue oleds. Adv. Funct. Mater. 2024 , 34 , 2310042..
Jao, C. C.; Chang, J. R.; Ya, C. Y.; Chen, W. C.; Cho, C. J.; Lin, J. H.; Chiu, Y. C.; Zhou, Y.; Kuo, C. C. Novel stretchable light-emitting diodes based on conjugated-rod block elastic-coil copolymers. Polym. Int. 2021 , 70 , 426−431..
Zhang, Z.; Wang, W.; Jiang, Y.; Wang, Y. X.; Wu, Y.; Lai, J. C.; Niu, S.; Xu, C.; Shih, C. C.; Wang, C.; Yan, H.; Galuska, L.; Prine, N.; Wu, H. C.; Zhong, D.; Chen, G.; Matsuhisa, N.; Zheng, Y.; Yu, Z.; Wang, Y.; Dauskardt, R.; Gu, X.; Tok, J. B. H.; Bao, Z. High-brightness all-polymer stretchable led with charge-trapping dilution. Nature 2022 , 603 , 624−630..
Han, S. J.; Zhou, H.; Kwon, H.; Woo, S.; Lee, T. Achieving low-voltage operation of intrinsically-stretchable organic light-emitting diodes. Adv. Funct. Mater. 2023 , 33 , 2211150..
Jeong, M. W.; Ma, J. H.; Shin, J. S.; Kim, J. S.; Ma, G.; Nam, T. U.; Gu, X.; Kang, S. J.; Oh, J. Y. Intrinsically stretchable three primary light-emitting films enabled by elastomer blend for polymer light-emitting diodes. Sci. Adv. 2023 , 9 , eadh1504..
Liu, W.; Zhang, C.; Alessandri, R.; Diroll, B. T.; Li, Y.; Liang, H.; Fan, X.; Wang, K.; Cho, H.; Liu, Y.; Dai, Y.; Su, Q.; Li, N.; Li, S.; Wai, S.; Li, Q.; Shao, S.; Wang, L.; Xu, J.; Zhang, X.; Talapin, D. V.; De Pablo, J. J.; Wang, S. High-efficiency stretchable light-emitting polymers from thermally activated delayed fluorescence. Nat. Mater. 2023 , 22 , 1160−1160..
Tomkeviciene, A.; Grazulevicius, J. V.; Kazlauskas, K.; Gruodis, A.; Jursenas, S.; Ke, T. H.; Wu, C. C. Impact of linking topology on the properties of carbazole trimers and dimers. J. Phys. Chem. C 2011 , 115 , 4887−4897..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802046900号