

FOLLOWUS
a.Branch of Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute" – Institute of Macromolecular Compounds, 31 Bolshoy pr. V.O., Saint Petersburg 199004, Russia
b.Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg 199034, Russia
c.Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, 31/bld.4 Leninskiy Prospect, Moscow 119071, Russia
d.P. N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninskiy 1 Prospect, Moscow 119991, Russia
e.Bauman Moscow State Technical University, Moscow 105005, Russia
f.PhysNano Department, ITMO University, Saint Petersburg 197101, Russia
g.Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia
h.Federal Research Center "Krasnoyarsk Science Center SB RAS", 50 Akademgorodok, Krasnoyarsk 660036, Russia
yakimansky@yahoo.com
Received:14 October 2025,
Accepted:25 November 2025,
Published Online:22 January 2026,
Published:05 February 2026
Scan QR Code
Mitroshin, A. M.; Miltsov, S. A.; Kolesnikov, I. E.; Lypenko, D. A.; Dmitriev, A. V.; Litvinova, L. S.; Korshunov, V. M.; Taydakov, I. V.; Ushakova, E. V.; Rogova, A. V.; Tomilin, F. N.; Yakimansky, A. V. In situ generation of carbazole-triazine thermally activated delayed fluoresscence emitters within the conjugated polymer chain. Chinese J. Polym. Sci. 2026, 44, 361–370
Alexander M. Mitroshin, Serguei A. Miltsov, Ilya E. Kolesnikov, et al.
Mitroshin, A. M.; Miltsov, S. A.; Kolesnikov, I. E.; Lypenko, D. A.; Dmitriev, A. V.; Litvinova, L. S.; Korshunov, V. M.; Taydakov, I. V.; Ushakova, E. V.; Rogova, A. V.; Tomilin, F. N.; Yakimansky, A. V. In situ generation of carbazole-triazine thermally activated delayed fluoresscence emitters within the conjugated polymer chain. Chinese J. Polym. Sci. 2026, 44, 361–370 DOI: 10.1007/s10118-025-3516-2.
Alexander M. Mitroshin, Serguei A. Miltsov, Ilya E. Kolesnikov, et al.
Polymer design allows the thermally activated delayed fluoresscence emitter to form directly inside the polymer chain during the synthesis if carbazole fragment is phenyl-substituted.
The development of polymeric materials that exhibit blue thermally activated delayed fluorescence (TADF) is of great interest for optoelectronic applications. However
achieving TADF in polymers often requires an elaborate monomer design. The high-energy local triplet state (
3
LE) of carbazole complicates its application despite the molecular orbital arrangement being suitable for blue emission. Here
we present an approach to polymer design that makes it possible to solve this problem. We demonstrate the
in situ
formation of a TADF donor-acceptor system during Suzuki polycondensation
creating an extended carbazole-based donor matrix coupled with a triazine acceptor. The resulting polymer exhibited efficient TADF with a low energy gap (Δ
E
ST
) value if a phenyl
N
-substituent
enabling essential electron delocalization
was present in the carbazole moiety. This work establishes a versatile platform for developing carbazole-based TADF polymers
overcoming the fundamental limitations that hinder their widespread application.
Tang, C. W.; Van Slyke, S. A. Organic electroluminescent diodes. Appl. Phys. Lett. 1987 , 51 , 913−915..
[Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Light-emitting diodes based on conjugated polymers. Nature . 1990 , 347 , 539–541..
[Hong, G.; Gan, X.; Leonhardt, C.; Zhang, Z.; Seibert, J.; Busch, J. M.; & Bräse, S . A. Brief history of OLEDs — emitter development and industry milestones. Adv. Mater. 2021 , 33 , 2005630..
[Dos Santos, J. M.; Hall, D.; Basumatary, B.; Bryden, M.; Chen, D.; Choudhary, P.; Comerford, T.; Crovini, E.; Danos, A.; De, J., Diesing, S.; Fatahi, M.; Griffin, M.; Gupta, A. K.; Hafeez, H.; Hämmerling, L.; Hanover, E.; Haug, J.; Heil; T., Zysman-Colman, E. The golden age of thermally activated delayed fluorescence materials: design and exploitation. Chem. Rev . 2024 , 124 , 13736–14110..
Liang, X.; Tu, Z.; Zheng, Y. Thermally activated delayed fluorescence materials: towards realization of high efficiency through strategic small molecular design. Chem Eur. J. 2019 , 25 , 5623−5642..
Wong, M. Y.; Zysman-Colman, E. Purely organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Adv. Mater. 2017 , 29 , 1605444..
Liu, Y.; Li, C.; Ren, Z.; Yan, S.; Bryce, M. R. All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Nat. Rev. Mater. 2018 , 3 , 1802..
Tankelevičiūtė, E.; Samuel, I. D. W.; Zysman-Colman, E. The blue problem: OLED stability and degradation mechanisms. J. Phys. Chem. Lett. 2024 , 15 , 1034−1047..
Fukagawa, H.; Shimizu, T.; Iwasaki, Y.;Yamamoto, T. Operational lifetimes of organic light-emitting diodes dominated by Förster resonance energy transfer. Sci. Rep. 2017 , 7 , 1735..
Cui, L.; Nomura, H.; Geng, Y.; Kim, J. U.; Nakanotani, H.; Adachi, C. Controlling singlet–triplet energy splitting for deep-blue thermally activated delayed fluorescence emitters. Angew. Chem. Int. Ed. 2017 , 56 , 1571−1575..
Etherington, M. K.; Gibson, J.; Higginbotham, H. F.; Penfold, T. J.; Monkman, A. P. Revealing the spin–vibronic coupling mechanism of thermally activated delayed fluorescence. Nat. Com. 2016 , 7 , 13680..
[Narsaria, A. K.; Rauch, F.; Krebs, J.; Endres, P.; Friedrich, A.; Krummenacher, I.; Braunschweig, H.; Finze, M.; Nitsch, J.; Bickelhaupt, F. M.; Marder, T. B. Computationally guided molecular design to minimize the LE/CT gap in D-π-A fluorinated triarylboranes for efficient TADF via D and π-bridge tuning. Adv. Funct. Mater . 2020 , 30 , 2002064..
[Noda, H.; Nakanotani, H.; Adachi, C. Excited state engineering for efficient reverse intersystem crossing. Sci. Adv . 2018 , 4 , 6910..
Tsorieva, A. V.; Korshunov, V. M.; Chmovzh, T. N.; Polikovskiy, T. A.; Lypenko, D. A.; Dmitriev, A. V.; Minyaev, M. E.; Aleksandrov, A. E.; Tameev, A. R.; Rakitin, O. A.; Taydakov, I. V. Influence of heavy atoms in β-diketone-based TADF emitters: photophysical properties and OLED applications. Opt. Mat. 2025 , 168 , 117470..
[Rao, J., Liu, X., Li, X., Yang, L., Zhao, L., Wang, S., Ding, J., & Wang, L. Bridging small molecules to conjugated polymers: efficient thermally activated delayed fluorescence with a methyl-substituted phenylene linker. Angew. Chem. Int. Ed . 2020 , 59 , 1320–1326..
[Wei, Q.; Kleine, P.; Karpov, Y.; Qiu, X.; Komber, H.; Sahre, K.; Kiriy, A.; Lygaitis, R.; Lenk, S.; Reineke, S.; & Voit, B. Conjugation-induced thermally activated delayed fluorescence (TADF): from conventional non-TADF units to TADF-active polymers. Adv. Funct. Mater . 2017 , 27 , 1605051..
Chang, Y. F.; Zhang, K. Y.; Han, B.; Shao, S. Y.; Wang, L. X. Narrowband blue fluorescent polymers employing boron-, sulfur-, nitrogen-doped polycyclic aromatic hydrocarbon emitters. Acta Polymerica Sinica (in Chinese) 2025 , 56 , 564−574..
Li, Q.; Chen, L.; Wang, X.; Wang, S.; Shao, S.; Lixiang, W. Non-conjugated polynorbornene hosts with high triplet energy levels for solution-processed narrowband blue OLEDs. Chem. Res. Chin. Univ. 2023 , 39 , 763−771..
[Byeon, S. Y.; Kim, J.; Lee, D. R.; Han, S. H.; Forrest, S. R.; Lee, J. Y. Nearly 100% horizontal dipole orientation and upconversion efficiency in blue thermally activated delayed fluorescent emitters. Adv. Opt. Mater . 2018 , 6 , 1701340..
[Demina, N. S.; R asputin, N. A.; Irgashev, R. A.; Tameev, A. R.; Nekrasova, N. V.; Rusinov, G. L.; Nunzi, J.-M.; Charushin, V. N. Benzo[ b ] selenophene/thieno[3,2- b ] indole-based N,S,Se-heteroacenes for hole-transporting layers. ACS Omega 2020 , 5 , 9377–9383..
Namazian, M.; Lin, C. Y.; Coote, M. L. Benchmark calculations of absolute reduction potential of ferricinium/ferrocene couple in nonaqueous solutions. J. Chem. Theory Comput. 2010 , 6 , 2721−2725..
Yakimanskiy, A. A.; Kaskevich, K. I.; Zhukova, E. V.; Berezin, I. A.; Litvinova, L. S.; Chulkova, T. G.; Lypenko, D. A.; Dmitriev, A. V.; Pozin, S. I.; Nekrasova, N. V.; Tomilin, F. N.; Ivanova, D. A.; Yakimansky, A. V. Synthesis, Photo- and electroluminescence of new polyfluorene copolymers containing dicyanostilbene and 9,10-dicyanophenanthrene in the main chain. Materials 2023 , 16 , 5592..
[Tsuneda, T. Density functional theory in quantum chemistry, Springer, 2014 , 9, p. 135.
Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009 , 113 , 6378−6396..
Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993 , 98 , 5648−5652..
[Liu, S.; Tian, Y.; Yan, L.; Wang, S.; Zhao, L.; Tian, H.; Ding, J.; Wang, L. Color tuning in thermally activated delayed fluorescence polymers with carbazole and tetramethylphenylene backbone. Macromolecules 2023 , 56 , 876–882..
Vydrov, O. A.; Heyd, J.; Krukau, A. V.; Scuseria, G. E. Importance of short-range versus long-range Hartree-Fock exchange for the performance of hybrid density functionals. J. Chem. Phys. 2006 , 125 , 074106..
Yanai, T.; Tew, D. P.; Handy, N. C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004 , 393 , 51−57..
Marques, M. A. L.; Gross, E. K. U. Time-dependent density functional theory. Annu. Rev. Phys. Chem. 2004 , 55 , 427−455..
Woo, S.-J.; Kim, J.-J. TD-DFT and experimental methods for unraveling the energy distribution of charge-transfer triplet/singlet states of a TADF molecule in a frozen matrix. J. Phys. Chem. A 2021 , 125 , 1234−1242..
Jacquemin, D.; Perpète, E. A.; Ciofini, I.; Adamo, C. Assessment of functionals for TD-DFT calculations of singlet−triplet transitions. J. Chem. Theory Comput. 2010 , 6 , 1532−1537..
[Barca, G. M. J.; Bertoni, C.; Carrington, L.; Datta, D.; de Silva, N.; Deustua, J. E.; Fedorov, D. G.; Gour, J. R.; Gunina, A. O.; Guidez, E.; Harville, T.; Irle, S.; Ivanic, J.; Kowalski, K.; Leang, S. S.; Li, H.; Li, W.; Lutz, J. J.; Magoulas, I.; Gordon, M. S. Recent developments in the general atomic and molecular electronic structure system. J. Chem. Phys . 2020 , 152 , 154102..
Peach, M. J. G.; Benfield, P.; Helgaker, T.; Tozer, D. J. Excitation energies in density functional theory: An evaluation and a diagnostic test. J. Chem. Phys. 2008 , 128 , 044118..
Lu, T.; Chen, F. Multiwfn: A multifunc tional wave function analyzer. J. Comput. Chem. 2012 , 33 , 580−592..
Liu, Z.; Lu, T.; Chen, Q. An sp-hybridized all-carboatomic ring, cyclo[18 ] carbon: electronic structure, electronic spectrum, and optical nonlinearity. Carbon 2020 , 165 , 461−467..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802046900号