

FOLLOWUS
a.School of Chemistry, Beihang University, Beijing 100191, China
b.Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China
zhenwang@buaa.edu.cn (Z.W.)
sunym@buaa.edu.cn (Y.M.S.)
Received:13 October 2025,
Accepted:25 November 2025,
Online First:13 February 2026,
Published:2025-12
Scan QR Code
Liu, C. H.; Lian, Y. C.; Song, J. L.; Duan, X. P.; Wang, Z.; Sun, Y. M. A bisphosphonic acid-functionalized carbazole for dual hydrophilic interfaces toward efficient and stable organic solar cells. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3512-6
Chun-Hui Liu, Yu-Chen Lian, Jia-Li Song, et al. A Bisphosphonic Acid-functionalized Carbazole for Dual Hydrophilic Interfaces Toward Efficient and Stable Organic Solar Cells[J/OL]. Chinese Journal of Polymer Science, 2025, 441-9.
Liu, C. H.; Lian, Y. C.; Song, J. L.; Duan, X. P.; Wang, Z.; Sun, Y. M. A bisphosphonic acid-functionalized carbazole for dual hydrophilic interfaces toward efficient and stable organic solar cells. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3512-6 DOI:
Chun-Hui Liu, Yu-Chen Lian, Jia-Li Song, et al. A Bisphosphonic Acid-functionalized Carbazole for Dual Hydrophilic Interfaces Toward Efficient and Stable Organic Solar Cells[J/OL]. Chinese Journal of Polymer Science, 2025, 441-9. DOI: 10.1007/s10118-025-3512-6.
Carbazole derivatives with a single phosphonic acid (PA) group are widely used as monolayer interfaces in perovskites and organic solar cells (OSCs). However
their hydrophilic nature renders ITO electrodes hydrophobic
limiting further applications. In this study
a novel carbazole-based compound functionalized with two PA groups
denoted 2PACz-D1
was designed to create a dual hydrophilic interface. This configuration enables the formation of a bilayer hole-transporting layer (HTL). Specifically
one PA group anchors to the ITO electrode
while the other generates a secondary hydrophilic surface. This allows the subsequent deposition of hydrophilic PEDOT:PSS
forming a protective bilayer HTL that shields ITO from corrosive acidic polymers. The OSCs incorporating this bilayer HTL achieved a power conversion efficiency of 19.44% and exhibited improved thermal stability compared to devices with a single HTL. This work demonstrates the potential of bis-PA carbazole derivatives for tailoring the HTL surface properties
offering promising opportunities for various organic electronic devices.
Liu, C.; Xiao, C.; Xie, C.; Li, W. Flexible organic solar cells: materials, large-area fabrication techniques and potentialapplications. Nano Energy 2021 , 89 , 106399..
Chen, H.; Jeong, S. Y.; Tian, J.; Zhang, Y.; Naphade, D. R.; Alsufyani, M.; Zhang, W.; Griggs, S.; Hu, H.; Barlow, S.; Woo, H. Y.; Marder, S. R.; Anthopoulos, T. D.; McCulloch, I.; Lin, Y. A 19% efficient and stable organic photovoltaic device enabled by a guest nonfullerene acceptor with fibril-like morphology. Energy Environ. Sci. 2023 , 16 , 1062−1070..
Cui, Y.; Xu, Y.; Yao, H.; Bi, P.; Hong, L.; Zhang, J.; Zu, Y.; Zhang, T.; Qin, J.; Ren, J.; Chen, Z.; He, C.; Hao, X.; Wei, Z.; Hou, J. Single-junction organic photovoltaic cell with 19% efficiency. Adv. Mater. 2021 , 33 , 2102420..
Zhu, L.; Zhang, M.; Xu, J.; Li, C.; Yan, J.; Zhou, G.; Zhong, W.; Hao, T.; Song, J.; Xue, X.; Zhou, Z.; Zeng, R.; Zhu, H.; Chen, C. C.; MacKenzie, R. C. I.; Zou, Y.; Nelson, J.; Zhang, Y.; Sun, Y.; Liu, F. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat. Mater. 2022 , 21 , 656−663..
Liu, K.; Jiang, Y.; Liu, F.; Ran, G.; Huang, F.; Wang, W.; Zhang, W.; Zhang, C.; Hou, J.; Zhu, X. Organic solar cells with over 19% efficiency enabled by a 2D-conjugated non-fullerene acceptor featuring favorable electronic and aggregation structures. Adv. Mater. 2023 , 35, 2300363..
Liu, B.; Xu, Y.; Xia, D.; Xiao, C.; Yang, Z.; Li, W. Semitransparent organic solar cells based on non-fullerene electron acceptors. Acta Physico Chimica Sinica 2021 , 37 , 2009056..
[Fu, J.; Fong, P. W. K.; Liu, H.; Huang, C. S.; Lu, X.; Lu, S.; Abdelsamie, M.; Kodalle, T.; Sutter-Fella, C. M.; Yang, Y.; Li, G. 19.31% binary organic solar cell and low non-radiative recombination enabled by non-monotonic intermediate state transition. Nat. Commun . 2023 , 14 , 1760..
Wang, J.; Bi, P.; Wang, Y.; Zheng, Z.; Chen, Z.; Qiao, J.; Wang, W.; Li, J.; An, C.; Zhang, S.; Hao, X.; Hou, J. Manipulating film formation kinetics enables organic photovoltaic cells with 19.5% efficiency. CCS Chem. 2024 , 6 , 218−229..
Meng, F.; Qin, Y.; Zheng, Y.; Zhao, Z.; Sun, Y.; Yang, Y.; Gao, K.; Zhao, D. Structural fusion yields guest acceptors that enable ternary organic s olar cells with 18.77 % efficiency. Angew. Chem. Int. Ed. 2023 , 62 , e202217173..
Liu, C.; Liu, J.; Duan, X.; Sun, Y. Green-processed non-nullerene organic solar cells based on Y-series acceptors. Adv. Sci. 2023 , 10 , 2303842..
Zhang, C.; Yao, L.; Pu, M.; Zhou, C. Recent material development and applications of conjugated polyelectrolytes by leveraging electronic and ionic transport properties. RSC Appl. Polym. 2025 , 3 , 549−573..
Wang, Y.; Chen, Q.; Wang, Y.; Zhang, G.; Zhang, Z.; Fang, J.; Zhao, C.; Li, W. Mechanically and ultraviolet light stable ultrathin organic solar cell via semi-embedding silver nanowires in a hydrogen bonds-based polyimide. Macromol. Rapid Commun. 2022 , 43 , 2200432..
Liu, B.; Sun, H.; Lee, J.-W.; Jiang, Z.; Qiao, J.; Wang, J.; Yang, J.; Feng, K.; Liao, Q.; An, M.; Li, B.; Han, D.; Xu, B.; Lian, H.; Niu, L.; Kim, B. J.; Guo, X. Efficient and stable organic solar cells enabled by multicomponent photoactive layer based on one-pot polymerization. Nat. Commun. 2023 , 14 , 967..
Duan, L.; Uddin, A. Progress in stability of organic solar cells. Adv. Sci. 2020 , 7 ,1903259..
Sun, R.; Wang, T.; Yang, X.; Wu, Y.; Wang, Y.; Wu, Q.; Zhang, M.; Brabec, C. J.; Li, Y.; Min, J. High-speed sequential deposition of photoactive layers for organic solar cell manufacturing. Nat. Energy 2022 , 7 , 1087−1099..
Xu, X. Y.; Wu, H. B.; Liang, S. J.; Tang, Z.; Li, M. Y.; Wang, J.; Wang, X.; Wen, J.; Zhou, E. J.; Li, W. W.; Ma, Z. F. Quantum efficiency and voltage losses in P3HT: non-fullerene solar cells. Acta Phys. -Chim. Sin. 2022 , 38 , 2201039..
Zhang, G.; Chen, Q.; Zhang, Z.; Fang, J.; Zhao, C.; Wei, Y.; Li, W. Co-La-based hole-transporting layers for binary organic solar cells with 18.82 % efficiency. Angew. Chem. Int. Ed. 2023 , 62 , e202216304..
Cameron, J.; Skabara, P. J. The damaging effects of the acidity in PEDOT:PSS on semiconductor device performance and solutions based on non-acidic alternatives. Mater. Horiz. 2020 , 7 , 1759−1772..
Jiang, Y.; Dong, X.; Sun, L.; Liu, T.; Qin, F.; Xie, C.; Jiang, P.; Hu, L.; Lu, X.; Zhou, X.; Meng, W.; Li, N.; Brabec, C. J.; Zhou, Y. An alcohol-dispersed conducting polymer complex for fully printable organic solar cells with improved stability. Nat. Energy 2022 , 7 , 352−359..
Li, Y.; Huang, B.; Zhang, X.; Ding, J.; Zhang, Y.; Xiao, L.; Wang, B.; Cheng, Q.; Huang, G.; Zhang, H.; Yang, Y.; Qi, X.; Zheng, Q.; Zhang, Y.; Qiu, X.; Liang, M.; Zhou, H. Lifetime over 10000 hours for organic solar cells with Ir/IrOx electron-transporting layer. Nat. Commun. 2023 , 14 , 1241..
Wang, Y.; Zheng, Z.; Wang, J.; Liu, X.; Ren, J.; An, C.; Zhang, S.; Hou, J. New method for preparing ZnO layer for efficient and stable organic solar cells. Adv. Mater. 2023 , 35 , 2208305..
Jiang, Y.; Sun, L.; Jiang, F.; Xie, C.; Hu, L.; Dong, X.; Qin, F.; Liu, T.; Hu, L.; Jiang, X.; Zhou, Y. Photocatalytic effect of ZnO on the stability of nonfullerene acceptors and its mitigation by SnO 2 for nonfullerene organic solar cells. Mater. Horiz. 2019 , 6 , 1438−1443..
Zilberberg, K.; Meyer, J.; Riedl, T. Solution processed metal-oxides for organic electronic devices. J. Mater. Chem. C 2013 , 1 , 4796−4815..
Zhang, X.; Zhang, H.; Li, Y.; Zafar, S. U.; Yang, S.; Chen, J.; Zhou, H.; Zhang, Y. Recent progress in hole-transporting layers of conventional organic solar cells with p–i–n structure. Adv. Funct. Mater. 2022 , 32 , 2205398..
[Lin, Y.; Magomedov, A.; Firdaus, Y.; Kaltsas, D.; El-Labban, A.; Faber, H.; Naphade, D. R.; Yengel, E.; Zheng, X.; Yarali, E.; Chaturvedi, N.; Loganathan, K.; Gkeka, D.; AlShammari, S. H.; Bakr, O. M.; Laquai, F.; Tsetseris, L.; Getautis, V.; Anthopoulos, T. D. 18.4 % Organic solar cells using a high ionization energy self-assembled monolayer as hole-extraction interlayer. ChemSusChem 2021 , 14 , 3569-3578..
Jing, J.; Dong, S.; Zhang, K.; Zhou, Z.; Xue, Q.; Song, Y.; Du, Z.; Ren, M.; Huang, F. Semitransparent organic solar cells with efficiency surpassing 15%. Adv. Energy Mater. 2022 , 12 , 2200453..
[Lin, Y.; Zhang, Y.; Zhang, J.; Marcinskas, M.; Malinauskas, T.; Magomedov, A.; Nugraha, M. I.; Kaltsas, D.; Naphade, D. R.; Harrison, G. T.; El-Labban, A.; Barlow, S.; De Wolf, S.; Wang, E.; McCulloch, I.; Tsetseris, L.; Getautis, V.; Marder, S. R.; Anthopoulos, T. D. 18.9% efficient organic solar cells based on n-doped bulk-heterojunction and halogen-substituted self-assembled monolayers as hole extracting interlayers. Adv. Energy Mater . 2022 , 12 , 2202503..
Xu, J.; Wang, S.; Wang, G.-J. N.; Zhu, C.; Luo, S.; Jin, L.; Gu, X.; Chen, S.; Feig, V. R.; To, J. W. F.; Rondeau-Gagné, S.; Park, J.; Schroeder, B. C.; Lu, C.; Oh, J. Y.; Wang, Y.; Kim, Y. H.; Yan, H.; Sinclair, R.; Zhou, D.; Xue, G.; Murmann, B.; Linder, C.; Cai, W.; Tok, J. B. H.; Chung, J. W.; Bao, Z. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 2017 , 355 , 59−64..
Lee, B. H.; Lee, J.-H.; Jeong, S. Y.; Park, S. B.; Lee, S. H.; Lee, K. Broad work-function tunability of p-type conjugated polyelectrolytes for efficient organic solar cells. Adv. Energy Mater. 2015 , 5 , 1401653..
Jo, J. W.; Jung, J. W.; Bae, S.; Ko, M. J.; Kim, H.; Jo, W. H.; Jen, A. K.-Y.; Son, H. J. Development of self-doped conjugated polyelectrolytes with controlled work functions and application to hole transport layer materials for high-performance organic solar cells. Adv. Mater. Interfaces 2016 , 3 , 1500703..
Xu, H.; Fu, X.; Cheng, X.; Huang, L.; Zhou, D.; Chen, L.; Chen, Y. Highly and homogeneously conductive conjugated polyelectrolyte hole transport layers for efficient organic solar cells. J. Mater. Chem. A 2017 , 5 , 14689−14696..
Lu, L.; Liao, Q.; Zu, Y.; Xu, Y.; Xu, B.; Hou, J. Significant effect of fluorination on simultaneously improving work function and transparency of anode interlayer for organic solar cells. Adv. Energy Mater. 2019 , 9 , 1803826..
Meng, H.; Jing, W.; Xu, X.; Yu, L.; Peng, Q. Nickel(II) Nitrate hole-transporting layers for single-junction bulk heterojunction organic solar cells with a record 19.02 % Efficiency. Angew. Chem. Int. Ed. 2023 , 62 , e202301958..
[Meng, H.; Liao, C.; Deng, M.; Xu, X.; Yu, L.; Peng, Q. 18.77 % efficiency organic solar cells promoted by aqueous solution processed Cobalt(II) acetate hole transporting layer. Angew. Chem. Int. Ed . 2021 , 60 , 22554-22561..
Song, C.; Huang, X.; Zhan, T.; Ding, L.; Li, Y.; Xue, X.; Lin, X.; Peng, H.; Cai, P.; Duan, C.; Chen, J. Annealing-insensitive, alcohol-processed MoOx hole transport layer for universally enabling high-performance conventional and inverted organic solar cells. ACS Appl. Mater. Interfaces 2022 , 14 , 40851−40861..
Ki, T.; Lee, C.; Kim, J.; Hwang, I. W.; Oh, C. M.; Park, K.; Lee, S.; Kim, J. H.; Balamurugan, C.; Kong, J.; Jeong, H. S.; Kwon, S.; Lee, K. Anion-induced catalytic reaction in a solution-processed Molybdenum Oxide for efficient inverted ternary organic photovoltaics. Adv. Funct. Mater. 2022 , 32 , 2204493..
Jiang, X.; Yang, J.; Karuthedath, S.; Li, J.; Lai, W.; Li, C.; Xiao, C.; Ye, L.; Ma, Z.; Tang, Z.; Laquai, F.; Li, W. Miscibility-controlled phase separation in double-cable conjugated polymers for single-component organic solar cells with efficiencies over 8%. Angew. Chem. Int. Ed. 2020 , 59 , 21683−21692..
Wageh, S.; Raïssi, M.; Berthelot, T.; Laurent, M.; Rousseau, D.; Abusorrah, A. M.; Al-Hartomy, O. A.; Al-Ghamdi, A. A. Digital printing of a novel electrode for stable flexible organic solar cells with a power conversion efficiency of 8.5%. Sci. Rep. 2021 , 11 , 14212..
Xiong, C.; Sun, J.; Yang, H.; Jiang, H. Real reason for high ideality factor in organic solar cells: Energy disorder. Sol Energy 2019 , 178 , 193−200..
Hartnagel, P.; Kirchartz, T. Understanding the light-intensity dependence of the short-circuit current of organic solar cells. Adv. Theor. Simul. 2020 , 3 , 2000116..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802046900号