

FOLLOWUS
a.Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
b.Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
happytw_3000@nwpu.edu.cn
Received:20 September 2025,
Accepted:13 November 2025,
Published Online:15 January 2026,
Published:2025-12
Scan QR Code
Li, H.; Dong, Y.; Liu, S. Y.; Zhang, J. A.; Zhang, Z. L.; Tian, W. Dynamic supramolecular polymer networks constructed by synergistic dual host-guest interactions. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3499-z
Hui Li, Yan Dong, Sheng-Yong Liu, et al. Dynamic Supramolecular Polymer Networks Constructed by Synergistic Dual Host-Guest Interactions[J/OL]. Chinese Journal of Polymer Science, 2025, 431-9.
Li, H.; Dong, Y.; Liu, S. Y.; Zhang, J. A.; Zhang, Z. L.; Tian, W. Dynamic supramolecular polymer networks constructed by synergistic dual host-guest interactions. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3499-z DOI:
Hui Li, Yan Dong, Sheng-Yong Liu, et al. Dynamic Supramolecular Polymer Networks Constructed by Synergistic Dual Host-Guest Interactions[J/OL]. Chinese Journal of Polymer Science, 2025, 431-9. DOI: 10.1007/s10118-025-3499-z.
The cross-linked structure plays a decisive role in determining the mechanical properties of polymer materials. Although various supramolecular polymer networks (SPNs) based on noncovalent bonds have been developed
few studies have focused on constructing SPNs through dual host-guest interactions between macro- and small-molecular building blocks. Herein
we utilized these building blocks to prepare SPNs aimed at addressing this gap. Specifically
the supramolecular polymer network SPN-EF was prepared through crown ether and pillararene-based dual host-guest interactions. Compared to the control systems SPN-AC and SPN-BD
which incorporate only single type of host-guest interaction (based on either crown ether or pillararene)
the SPN-EF integrate the advantages of both systems
exhibiting balanced and enhanced mechanical properties. Moreover
the resulting SPN gels retain significant dynamic properties
including excellent self-healing capability and stimuli-responsiveness.
Aida, T.; Meijer, E. W.; Stupp. S. L. Functional supramolecular polymers. Science 2012 , 335 , 813−817..
Hirao, T.; Kudo, H.; Amimoto, T.; Haino, T. Sequence-controlled supramolecular terpolymerization directed by specific molecular recognitions. Nat. Commun. 2017 , 8 , 634..
Verma, P.; Singh, A.; Rahimi, F. A.; Sarkar, P.; Nath, S.; Pati, S. K.; Maji, T. K. Charge-transfer regulated visible light driven photocatalytic H 2 production and CO 2 reduction in tetrathiafulvalene based coordination polymer gel. Nat. Commun. 2021 , 12 , 7313..
Wang, Z. Y.; Sun, C.; Yang, K.; Chen, X. Y.; Wang, R. B. Cucurbituril-based supramolecular polymers for biomedical applications. Angew. Chem., Int. Ed. 2022 , 61 , e202206763..
Yang, X. Y.; Cai, W. Q.; Dong, S.; Zhang, K.; Zhang, J.; Huang, F. H.; Huang, F.; Cai, Y. Fluorescent supramolecular polymers based on pillar[5 ] arene for OLED device fabrication. ACS Macro. Lett. 2017 , 6 , 647−651..
Xu, H.; Rudkevich, D. M. CO 2 in supramolecular chemistry: preparation of switchable supramolecular polymers. Chem. Eur. J. 2004 , 10 , 5432−5442..
Shi, X.; Zhang, X.; Ni, X.; Zhang, H.; Wei, P.; Liu, J.; Xing, H.; Peng, H.; Lam, J. W. Y.; Zhang, P.; Wang, Z.; Hao, H.; T ang, B. Supramolecular polymerization with dynamic self-sorting sequence control. Macromolecules 2019 , 52 , 8814−8825..
Wang, L.; Cheng, L.; Li, G. F.; Liu, K.; Zhang, Z. M.; Li, P. T.; Dong, S. Y.; Yu, W.; Huang, F. H.; Yan, X. Z. A Self-cross-linking supramolecular polymer network enabled by crown-ether-based molecular recognition. J. Am. Chem. Soc. 2020 , 142 , 2051−2058..
Kang, J.; Miyajima, D.; Mori, T.; Inoue, Y.; Itoh, Y.; Aida, T. A rational strategy for the realization of chain-growth supramolecular polymerization. Science 2015 , 347 , 646−651..
Neill, S. J. K.; Huang, Z. H.; Ahmed, M. H.; Boys, A. J.; Bosom, S. V.; Li, J. X.; Owens, R. M.; McCune, J. A.; Malliaras, G. G.; Scherman, O. A. Tissue-mimetic supramolecular polymer networks for bioelectronics. Adv. Mater. 2023 , 35 , 2207634..
Wang, Z. Q.; Wang, X.; Yang, Y. W. Pillararene-based supramolecular polymers for adsorption and separation. Adv. Mater. 2024 , 36 , 2301721..
Wang, F.; Liao, R.; Wang, F. Pathway control o f π-Conjugatedsupramolecular polymers by Incorporating donor–acceptor functionality. Angew. Chem., Int. Ed. 2023 , 135 , e202305827..
Wang, Z. Y.; Sun, C.; Yang, K.; Chen, X. Y.; Wang, R. B. Host−guest interactions induce supramolecular assembly and inhibit electron transfer to enhance the fluorescence emission of supramolecular polymers. Macromolecules 2024 , 57 , 1328−1336..
Lu, C. J.; Zhang, M. M.; Tang, D. T.; Yan, X. Z.; Zhang, Z. Y.; Zhou, Z. X.;Song, B.; Wang, H.; Li, X. P.; Yin, S. C.; Sepehrpour, H.; Stang, P. J. Fluorescent metallacage-core supramolecular polymer gel formed by orthogonal metal coordination and host-guest interactions. J. Am. Chem. Soc. 2018 , 140 , 7674−7680..
Lei, Z. Y.; Wu, P. Y. A Supramolecular biomimetic skin combining a wide spectrum of mechanical properties and multiple sensory capabilities. Nat. Commun. 2018 , 9 , 1134..
Jiang, Y.; Zhang, Z.; Wang, Y. X.; Li, D.; Coen, C. T.; Hwaun, E.; Chen, G.; Wu, H. C.; Zhong, D.; Niu, S.; Wang, W.; Saberi, A.; Lai, J. C.; Wu, Y.; Wang, Y.; Trotsyuk, A. A.; Loh, K. Y.; Shih, C. C.; Xu, W.; Liang, K.; Zhang, K.; Bai, Y.; Gurusankar, G.; Hu, W.; Jia, W.; Cheng, Z.; Dauskardt, R. H.; Gurtner, G. C.; Tok, J. B. H.; De isseroth, K.; Soltesz, I.; Bao, Z. Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science 2022 , 375 , 1411−1417..
Li, G. F.; Zhao, J.; Zhang, Z. M.; Zhao, X. Y.; Cheng, L.; Liu, Y. H.; Guo, Z. W.; Yu, W.; Yan, X. Z. Robust and dynamic polymer networks enabled by woven crosslinks. Angew. Chem. Int. Ed. 2022 , 61 , e202210078..
Niu, W. W.; Li, Z. Q.; Liang, F. L.; Zhang, H. Y.; Liu, X. K. Ultrastable, superrobust, and recyclable supramolecular polymer networks. Angew. Chem. Int. Ed. 2024 , 63 , e202318434..
[Schiel, P.; Maaloum, M.; Moulin, E.; Nyrkova, I.; Semenov, A.; Dattler, D.; Accou, L. A.; Christoulaki, A.; Buhler, E.; Plamont, R.; Lehn, J. M.; Giuseppone, N. Supramolecular polymerization through rotation of light-driven molecular motors. Nat. Nanotechnol . 2025 , DOI: 10.1038/s41565-025-01933-0..
Hua, B.; Zhang, C.; Zhou, W.; Shao, L.; Wang, Z. D.; Wang, L. J.; Zhu, H. M.; Huang, F. H. Pillar[5 ] arene-based solid-state supramolecular polymers with suppressed aggregation-caused quenching effects and two-photon excited emission. J. Am. Chem. Soc. 2020 , 142 , 1 6557−16561..
Sautaux, J. L.; Marx, F.; Gunkel, I.; Weder, C.; Schrettl, S. Mechanically robust supramolecular polymer co-assemblies. Nat. Commun. 2022 , 13 , 356..
Nosiglia, M. A.; Colley, N. D.; Danielson, M. K.; Palmquist, M. S.; Delawder, A. O.; Tran, S. L.; Harlan, G. H.; Barnes, J. C. Metalation/demetalation as a postgelation strategy to tune the mechanical properties of catenane-crosslinked gels. J. Am. Chem. Soc. 2022 , 144 , 9990−9996..
Ji, X.; Ahmed, M.; Long, L.; Khashab, N. M.; Huang, F.; Sessler, J. L. Adhesive supramolecular polymeric materials constructed from macrocycle-based host–guest interactions. Chem. Soc. Rev. 2019 , 48 , 2682−2697..
Filippidi, E.; Cristiani, T. R.; Eisenbach, C. D.; Waite, J. H.; Israelachvili, J. N.; Ahn, B. K.; Valentine, M. T. Toughening elastomers using mussel-inspired iron-catechol complexes. Science 2017 , 358 , 502−505..
Schmuck, C.; Wienand, W. Self-Complementary Quadruple Hydrogen-bonding motifs as a functional principle: from dimeric supramolecules to supramolecular polym ers. Angew. Chem., Int. Ed. 2001 , 40 , 4363−4369..
Akae, Y.; Sogawa, H.; Takata, T. Cyclodextrin-based [3 ] rotaxane-crosslinked fluorescent polymer: synthesis and de-crosslinking using size complementarity. Angew. Chem. Int. Ed. 2018 , 57 , 14832−14836..
Lundberg, D. J.; Brown, C. M.; Bobylev, E. O.; Oldenhuis, N. J.; Alfaraj, Y. S.; Zhao, J. L.; Kevlishvili, I.; Heather J. Kulik. H. J.; Johnson, J. A. Nested non-covalent interactions expand the functions of supramolecular polymer networks. Nat. Commun. 2024 , 15 , 3951..
Liu, Y. H.; Wan, J. J.; Zhao, X. Y.; Zhao, J.; Guo, Y. C.; Bai, R. X.; Zhang, Z. M.; Yu, W.; Gibson, H. W.; Yan, X. Z. Highly strong and tough supramolecular polymer networks enabled by cryptand-based host−guest recognition. Angew. Chem. Int. Ed. 2023 , 62 , e202302370..
Li, G. F.; Wang, L.; Wu, L.; Guo, Z. W.; Zhao, J.; Liu, Y. H.; Bai, R. X.; Yan, X. Z. Woven polymer networks via the topological transformation of a [2 ] catenane. J. Am. Chem. Soc. 2020 , 142 , 14343−14349..
[Larnaudie, S. C.; Brendel, J. C.; Jolliffe, K. A.; Perrier, S. pH-responsive, amphiphilic core–shell supramolecular polymer brushes from cyclic peptide–polymer conjugates. ACS Macro. Lett . 2017 , 6 , 1347–1351..
Metze, F. K.; Klok, H. A. Supramolecular polymer brushes grafted via atom transfer radical polymerization from surfaces presenting non-covalent, host–guest complex-based initiators. Macromolecules 2025 , 58 , 3554−3563..
Li, H.; Rao, S. H.; Yang, Y.; Xu, F. F.; Huang, Z.; Huang, X. H.; Zhu, Z.; Liu, S. Y.; Zhang, Z. L.; Tian, W. Multistep sequence-controlled supramolecular polymerization by the combination of multiple self-assembly motifs. iScience 2023 , 26 , 106023..
Saha, M. L.; De, S.; Pramanik, S.; Schmittel, M. Orthogonality in discrete self-assembly – survey of current concepts. Chem. Soc. Rev. 2013 , 42 , 6860−6909..
Xiao, T. X.; Zhou, L.; Sun, X. Q.; Huang, F. H.; Lin, C.; Wang, L. Y. Supramolecular polymers fabricated by orthogonal self-assembly based on multiple hydrogen bonding and macrocyclic host–guest interactions. Chin. Chem. Lett. 2020 , 31 , 1−9..
Zhang, C. J.; Li, S. J.; Zhang, J. Q.; Zhu, K. L.; Li, N.; Huang, F. H. Benzo-21-crown-7/secondary dialkylammonium salt [2 ] pseudorotaxane- and [2 ] rotaxane-type threaded structures. Org. Lett. 2007 , 9 , 5553−5556..
Li, C. J.; Han, K.; Li, J.; Zhang, Y. Y.; Chen, W.; Yu, Y. H.; Jia, X. S. Supramolecular polymers based on efficient pillar[5 ] arene-neutral guest motifs. Chem. Eur. J. 2013 , 19 , 11892−11897..
Xiao, T.; Feng, X.; Wang, Q.; Lin, C.; Wang, L.; Pan, Y. Switchable supramolecular polymers from the orthogonal self-assembly of quadruple hydrogen bonding and benzo-21-crown-7−secondary ammonium salt recognition. Chem. Commun. 2013 , 49 , 8329−8331..
Liu, D.; Wang, D. P.; Wang, M.; Zheng, Y. J.; Koynov, K.; Auernhammer, G. K.; Butt, H. J.; Ikeda, T. Supramolecular organogel based on crown ether and secondary ammonium Ion functionalized glycidyl triazole polymers. Macromolecules 2013 , 46 , 4617−4625..
Shentu, Z. X.; Zhang, Z. M.; Zhao, J.; Chen, C. S.; Wu, Q.; Wang, L.; Yan, X. Z. Supramolecular polymer-assisted manipu lation of triblock copolymers: understanding the relationships between microphase structures and mechanical properties. J. Mater. Chem. A. 2021 , 9 , 19619−19624..
Huang, Z. H.; Chen, X. Y.; Stephen, J. K.; Wu, G.; Whitaker, D. J.; Li, J. X.; McCune, J. A.; Scherman, O. A. Highly compressible glass-like supramolecular polymer network. Nat. Mater. 2022 , 21 , 103−109..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802046900号