

FOLLOWUS
a.State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Chemistry, Tiangong University, Tianjin 300387, China
b.Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
dqzhang@iccas.ac.cn
Received:10 October 2025,
Accepted:07 November 2025,
Online First:22 January 2026,
Published:2025-12
Scan QR Code
Wu, C. C.; Dong, J. F.; Chenchai, K. Y.; Chen, L. L.; Shi, T. Y.; Ma, J. L.; Li, Z. M.; Zhao, J. H.; Zang, H. J.; Zhang, G. X.; Zhang, D. Q. Efficient photo-patterning of polymer semiconductors with a four-armed diazo-based oligomer cross-linker. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3496-2
Chang-Chun Wu, Jia-Feng Dong, Kai-Yuan Chenchai, et al. Efficient Photo-patterning of Polymer Semiconductors with a Four-armed Diazo-based Oligomer Cross-linker[J/OL]. Chinese Journal of Polymer Science, 2025, 431-13.
Wu, C. C.; Dong, J. F.; Chenchai, K. Y.; Chen, L. L.; Shi, T. Y.; Ma, J. L.; Li, Z. M.; Zhao, J. H.; Zang, H. J.; Zhang, G. X.; Zhang, D. Q. Efficient photo-patterning of polymer semiconductors with a four-armed diazo-based oligomer cross-linker. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3496-2 DOI:
Chang-Chun Wu, Jia-Feng Dong, Kai-Yuan Chenchai, et al. Efficient Photo-patterning of Polymer Semiconductors with a Four-armed Diazo-based Oligomer Cross-linker[J/OL]. Chinese Journal of Polymer Science, 2025, 431-13. DOI: 10.1007/s10118-025-3496-2.
Efficient photo-patterning of polymer semiconductors with cross-linkers has emerged as a promising route to fabricate organic integrated circuits
via
all-solution processing techniques. Herein
we report a new four-armed diazo-based oligomer photo-crosslinker
2DPP4N
2
for the patterning of semiconducting polymers by UV light-induced crossing-linking reaction. After blending
2DPP4N
2
with polymer semiconductors such as
PDPP4T
(p-type)
PDPP3T
(ambipolar) and
N2200
(n-type)
we prepared various patterns with a resolution of 6 μm by irradiating through a photo-mask with 254 nm UV light for 160 s. Notably
the interchain packing and surface morphology remained nearly unchanged after photo-patterning
as characterized by atomic force microscopy (AFM) and grazing incidence wide-angle X-ray scattering (GIWAXS). Consequently
the charge transport property of the patterned thin film was largely maintained in comparison to that of its pristine thin film. These results reveal that
2DPP4N
2
is a viable and promising candidate for application in all-solution-processable flexible integrated electronic devices.
[Sirringhaus, H. 25th Anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv. Mater . 2014 , 26 , 1319-1335..
Liu, K.; Jiang, Y. W.; Bao, Z. N.; Yan, X. Z. Skin-inspired electronics enabled by supramolecular polymeric materials. CCS Chem. 2019 , 1 , 431−447..
Liu, Z. T.; Zhang, G. X.; Zhang, D. Q. Modification of side chains of conjugated molecules and polymers for charge mobility enhancement and sensing functionality. Acc. Chem. Res. 2018 , 51 , 1422−1432..
Fei, Z. P.; Han, Y.; Gann, E.; Hodsden, T.; Chesman, A. S. R.; McNeill, C. R.; Anthopoulos, T. D.; Heeney, M. Alkylated selenophene-based ladder-type monomers via a facile route for high-performance thin-film transistor applications. J. Am. Chem. Soc. 2017 , 139 , 8552−8561..
Yang, J.; Li, J. F.; Zhang, X. G.; Yang, W. L.; Jeong, S. Y.; Huang, E. M.; Liu, B.; Woo, H. Y.; Chen, Z. C.; Guo, X. G. Functionalized phenanthrene imide-based polymers for n-type organic thin-film transistors. Angew. Chem. Int. Ed. 2024 , 63 , e202319627..
Luo, X.; Yu, J. K.; Tang, H. R.; Cai, H. J.; Xiong, W.; Zhang, K.; Huang, F.; Cao, Y. Self-doped conjugated polymers with electron-deficient quinone units for enhanced electron transport in highly efficient organic solar cells. FlexMat 2024 , 1 , 105−115..
Yang, Y. Z.; Liu, Z. T.; Zhang, G. X.; Zhang, X. S.; Zhang, D. Q. The effects of side chains on the charge mobilities and functionalities of semiconducting conjugated polymers beyond solubilities. Adv. Mater. 2019 , 31 , 1903104..
Zaumseil, J.; Sirringhaus, H. Electron and ambipolar transport in organic field effect transistors. Chem. Rev. 2007 , 107 , 1296−1323..
Carsten, B.; He, F.; Son, H. J.; Xu, T.; Yu, L. P. Stille polycondensation for synthesis of functional materials. Chem. Rev. 2011 , 111 , 1493−1528..
Wen, Y. G.; Liu, Y. Q.; Guo, Y. L.; Yu, G.; Hu, W. P. Experimental techniques for the fabrication and characterization of organic thin films for field-effect transistors. Chem. Rev. 2011 , 111 , 3358−3406..
Liu, K. Q.; Gu, Y. H.; Yi, Z. R.; Liu, Y. Q. Diketopyrrolopyrrole-based conjugated polymers as representative semiconductors for high-performance organic thin-film transistors and circuits. Chinese J. Polym. Sci. 2023 , 41 , 671−682..
Li, Y. F.; Guo, Y. L.; Liu, Y. Q. Recent progress in donor-acceptor type conjugated polymers for organic field-effect transistors. Chinese J. Polym. Sci. 2023 , 41 , 652−670..
[Huang, B. L.; Chen, P. Y.; Hua, X. Q.; Qiu, D. S.; Cui, T. Q.; Zhang, J. L.; Zhang, S. X.; Yuan, C. S.; He, F.; Shao, X. F.; Zhang, H. L.; Liu, Z. T. "Two-in-One" DPP building blocks for ambipolar conjugated polymers in flexible transistors. J. Am. Chem. Soc . 2025 , 147 , 17954-17966..
Wang, Z. L.; Song, X. N.; Jiang, Y.; Zhang, J. D.; Yu, X.; Deng, Y. F.; Han, Y.; Hu, W. P.; Geng, Y. H. A simple structure conjugated polymer for high mobility organic thin film transistors processed from nonchlorinated solvent. Adv. Sci. 2019 , 6 , 1902412..
Chen, R.; Jin, T. Y.; Liu, Y. D.; Zhang, T.; Liu, X. Y.; Zhang, L.; Chen, Y.; Li, H. X.; Duan, X. Z.; Han, Y. C. Improving carrier mobility of near-amorphous donor-acceptor conjugated polymer thin films via promoting intensive and continuous polymer aggregations. Macromolecules 2023 , 56 , 5356−5368..
Ma, J.; Tian, J. W.; Liu, Z. T.; Shi, D. D.; Zhang, X. S.; Zhang,G. X.; Zhang, D. Q. Multi-stimuli-responsive field-effect transistor with conjugated polymer entailing spiropyran in the side chains. CCS Chem. 2019 , 1 , 632−641..
Zhang, S.; Zhao, Y.; Wang, Y. R.; Chen, R. Z.; Liu, Y. Q.; Wei, D. C. Photolithographic organic electronics: from material design to applications. Chem. Soc. Rev. 2025 , 54 , 6610−6633..
Zhang, D. Q.; Li, C.; Zhang, G. X.; Tian, J. W.; Liu, Z. T. Phototunable and photopatternable polymer semiconductors. Acc. Chem. Res. 2024 , 57 , 625−635..
Zheng, Y. Q.; Liu, Y. X.; Zhong, D. L.; Nikzad, S.; Liu, S. H.; Yu, Z.; Liu, D. Y.; Wu, H. C.; Zhu, C. X.; Li, J. X.; Tran, H.; Tok, J. B. H.; Bao, Z. N. Monolithic optical microlithography of high-density elastic circuits. Science 2021 , 373 , 88−94..
Li, Y.; Chen, R. Z. Photolithographic patterning of organic semiconductors for organic field-effect transistors. Chem. Rev. 2025 , 125 , 4933−4973..
Fang, X. C.; Shi, J. L.; Zhang, X. J.; Ren, X. B.; Lu, B.; Deng, W.; Jie, J. S.; Zhang, X. H. Patterning liquid crystalline organic semiconductors via inkjet printing for high-performance transistor arrays and circuits. Adv. Funct. Mater. 2021 , 31 , 2100237..
Minemawari, H.; Yamada, T.; Matsui, H.; Tsutsumi, J.; Haas, S.; Chiba, R.; Kumai, R.; Hasegawa, T. Inkjet printing of single-crystal films. Nature 2011 , 475 , 364−367..
Wang, Q. B.; Su, B.; Liu, H.; Jiang, L. Chinese brushes: controllable liquid transfer in ratchet conical hairs. Adv. Mater. 2014 , 26 , 4889..
Chen, S. N.; Ma, X. Y.; Cai, Z. R.; Long, H. R.; Wang, X. Y.; Li, Z.; Qu, Z. Y.; Zhang, F. J.; Qiao, Y. L.; Song, Y. L. A direct writing approach for organic semiconductor single crystal patterns with unique orientation. Adv. Mater. 2022 , 34 , 2200928..
Guo, L. J. Nanoimprint lithography: Methods and material requirements. Adv. Mater. 2007 , 19 , 495−513..
Li, S. X.; Huang, G. Y.; Xia, H.; Fu, T. R.; Wang, X. J.; Zeng, X.; Liu, X. F.; Yu, Y. H.; Chen, Q. D.; Lin, L. H.; Sun, H. B. Nanoimprint crystalithography for organic semiconductors. Nat. Commun. 2025 , 16 , 3636..
Chen, Z.; Duan, S. M.; Zhang, X. T.; Geng, B. W.; Xiao, Y. L.; Jie, J. S.; Dong, H. L.; Li, L. Q.; Hu, W. P. Organic semiconductor crystal engineering for high-resolution layer-controlled 2D crystal arrays. Adv. Mater. 2021 , 34 , 2104166..
Briseno, A. L.; Mannsfeld, S. C. B.; Ling, M. M.; Liu, S. H.; Tseng, R. J.; Reese, C.; Roberts, M. E.; Yang, Y.; Wudl, F.; Bao, Z. N. Patterning organic single-crystal transistor arrays. Nature 2006 , 444 , 913−917..
Zhao, Y. Y.; Fan, X. Y.; Feng, J. G.; Wang, X. D.; Wu, Y. C.; Su, B.; Jiang, L. Regulated dewetting for patterning organic single crystals with pure crystallographic orientation toward high performance field-effect transistors. Adv. Funct. Mater. 2018 , 28 , 1800470..
Smith, Z. C.; Meyer, D. M.; Simon, M. G.; Staii, C.; Shukla, D.; Thomas, S. W. Thiophene-based conjugated polymers with photolabile solubilizing side chains. Macromolecules 2015 , 48 , 959−96 6..
Lu, K.; Guo, Y. L.; Liu, Y. Q.; Di, C. A.; Li, T.; Wei, Z. M.; Yu, G.; Du, C. Y.; Ye, S. H. Novel functionalized conjugated polythiophene with oxetane substituents: synthesis, optical, electrochemical, and field-effect properties. Macromolecules 2009 , 42 , 3222−3226..
Gao, C. Y.; Shi, D. D.; Li, C.; Yu, X. B.; Zhang, X. S.; Liu, Z. T.; Zhang, G. X.; Zhang, D. Q. A dual functional diketopyrrolopyrrole-based conjugated polymer as single component semiconducting photoresist by appending azide groups in the side chains. Adv. Sci. 2022 , 9 , 2106087..
Jiang, W. L.; Yu, X. B.; Li, C.; Zhang, X. S.; Zhang, G. X.; Liu, Z. T.; Zhang, D. Q. Fluoro-substituted DPP-bisthiophene conjugated polymer with azides in the side chains as ambipolar semiconductor and photoresist. Sci. China Chem. 2022 , 65 , 1791−1797..
Li, N.; Dai, Y. H.; Li, Y.; Dai, S. L.; Strzalka, J.; Su, Q.; De Oliveira, N.; Zhang, Q. T.; St Onge, P. B. J.; Rondeau-Gagne, S.; Wang, Y. F.; Gu, X. D.; Xu, J.; Wang, S. H. A universal and facile approach for building multifunctional conjugated polymers for human-integrated electronics. Matter 2021 , 4 , 3015−3029..
Xue, X.; Li, C.; Yu, X. B.; Chenchai, K. Y.; Zhang, X. Y.; Zhang, X. S.; Zhang, G. X.; Zhang, D. Q. Photo-patternable and healable polymer semiconductor enabled by dynamic covalent disulfide bonding. Angew. Chem. Int. Ed. 2025 , 64 , e202425172..
Bojanowski, N. M.; Huck, C.; Veith, L.; Strunk, K. P.; Bäuerle, R.; Melzer, C.; Freudenberg, J.; Wacker, I.; Schröder, R. R.; Tegeder, P.; Bunz, U. H. F. Electron-beam lithography of cinnamate polythiophene films: conductive nanorods for electronic applications. Chem. Sci. 2022 , 13 , 7880−7885..
Wang, B. H.; Huang, W.; Lee, S.; Huang, L. Z.; Wang, Z.; Chen, Y.; Chen, Z. H.; Feng, L. W.; Wang, G.; Yokota, T.; Someya, T.; Marks, T. J.; Facchetti, A. Foundry-compatible high-resolution patterning of vertically phase-separated semiconducting films for ultraflexible organic electronics. Nat. Commun. 2021 , 12 , 4937..
Qiu, L. Z.; Xu, Q.; Lee, W. H.; Wang, X. H.; Kang, B.; Lv, G. Q.; Cho, K. Organic thin-film transistors with a photo-patternable semiconducting polymer blend. J. Mater. Chem. 2011 , 21 , 15637−15642..
Chen, R. Z.; Wang, X. J.; Li, X.; Wan g, H. X.; He, M. Q.; Yang, L. F.; Guo, Q. Y.; Zhang, S.; Zhao, Y.; Li, Y.; Liu, Y. Q.; Wei, D. C. A comprehensive nano-interpenetrating semiconducting photoresist toward all-photolithography organic electronics. Sci. Adv. 2021 , 7 , eabg0659..
Wang, S. H.; Xu, J.; Wang, W. C.; Wang, G. J. N.; Rastak, R.; Molina-Lopez, F.; Chung, J. W.; Niu, S. M.; Feig, V. R.; Lopez, J.; Lei, T.; Kwon, S. K.; Kim, Y.; Foudeh, A. M.; Ehrlich, A.; Gasperini, A.; Yun, Y.; Murmann, B.; Tok, J. B. H.; Bao, Z. N. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 2018 , 555 , 83..
Kim, M. J.; Lee, M.; Min, H.; Kim, S.; Yang, J.; Kweon, H.; Lee, W.; Kim, D.; Choi, J. H.; Ryu, D.; Kang, M. S.; Kim, B.; Cho, J. H. Universal three-dimensional crosslinker for all-photopatterned electronics. Nat. Commun. 2020 , 11 , 1520..
Zhong, D. L.; Wu, C.; Jiang, Y. W.; Yuan, Y. J.; Kim, M. G.; Nishio, Y.; Shih, C. C.; Wang, W. C.; Lai, J. C.; Ji, X. Z.; Gao, T. Z.; Wang, Y. X.; Xu, C. Y.; Zheng, Y.; Yu, Z.; Gong, H. X.; Matsuhisa, N.; Zhao, C. Z.; Lei, Y. S.; Liu, D. Y.; Zhang, S.; Ochiai, Y.; Liu, S. H.; Wei, S. Y.; Tok, J. B. H.; Bao, Z. N. High-speed and large-scale intrinsically stretchable integrated circuits. Nature 2024 , 627 , 313..
Xue, X.; Li, C.; Zhou, Q.; Yu, X. B.; Gao, C. Y.; Chenchai, K. Y.; Liao, J. C.; Shangguan, Z. C.; Zhang, X. S.; Zhang, G. X.; Zhang, D. Q. Conjugated polymer-based photo-crosslinker for efficient photo-patterning of polymer semiconductors. Adv. Mater. 2024 , 36 , 2407305..
Wu, C. C.; Li, C.; Yu, X. B.; Chen, L. L.; Gao, C. Y.; Zhang, X. S.; Zhang, G. X.; Zhang, D. Q. An efficient diazirine-based four-armed cross-linker for photo-patterning of polymeric semiconductors. Angew. Chem. Int. Ed. 2021 , 60 , 21521−21528..
Yi, Y. Q. Q.; Qi, D. W.; Wei, H. H.; Xie, L. M.; Chen, Y. Y.; Yang, J.; Hu, Z. S.; Liu, Y.; Meng, X. Q.; Su, W. M.; Cui, Z. Molecular design of diazo compound for carbene-mediated cross-linking of hole-transport polymer in QLED with reduced energy barrier and improved charge balance. ACS Appl. Mater. Interfaces 2022 , 14 , 39149−39158..
Lepage, M. L.; Simhadri, C.; Liu, C.; Takaffoli, M.; Bi, L. T.; Crawford, B.; Milani, A. S.; Wulff, J. E. A broadly applicable cross-linker for aliphatic polymers containing C-H bonds. Science 2019 , 366 , 875−878..
Wang, Z. J.; Liu, Z. T.; Ning, L.; Xiao, M. F.; Yi, Y. P.; Cai , Z. X.; Sadhanala, A.; Zhang, G. X.; Chen, W.; Sirringhaus, H.; Zhang, D. Q. Charge mobility enhancement for conjugated DPP-selenophene polymer by simply replacing one bulky branching alkyl chain with linear one at each DPP unit. Chem. Mater. 2018 , 30 , 3090−3100..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802046900号