

FOLLOWUS
School of Materials Science and Engineering, Hainan University, Haikou 570228, China
mchluo@hainanu.edu.cn
Received:29 September 2025,
Revised:2025-10-10,
Accepted:22 October 2025,
Published Online:25 December 2025,
Published:15 January 2026
Scan QR Code
Guo, H. J.; Wu, Z. L.; Liao, S. Q.; Luo, M. C. Toughening recycled waste rubbers by dynamic interactions for stress deconcentration. Chinese J. Polym. Sci. 2026, 44, 234–241
Hao-Jia Guo, Zhou-Liang Wu, Shuang-Quan Liao, et al. Toughening Recycled Waste Rubbers by Dynamic Interactions for Stress Deconcentration[J/OL]. Chinese Journal of Polymer Science, 2026, 44234-241.
Guo, H. J.; Wu, Z. L.; Liao, S. Q.; Luo, M. C. Toughening recycled waste rubbers by dynamic interactions for stress deconcentration. Chinese J. Polym. Sci. 2026, 44, 234–241 DOI: 10.1007/s10118-025-3489-1.
Hao-Jia Guo, Zhou-Liang Wu, Shuang-Quan Liao, et al. Toughening Recycled Waste Rubbers by Dynamic Interactions for Stress Deconcentration[J/OL]. Chinese Journal of Polymer Science, 2026, 44234-241. DOI: 10.1007/s10118-025-3489-1.
When recycled wasted rubber (WR) is subjected to external stress
the loads are redistributed across a broad region of adjacent regions instead of being concentrated on a limited length scale
which resists crack propagation.
Recycling of waste rubber (WR) is crucial for the sustainable development of the rubber industry. The enhancement of interfacial interactions is the main strategy for waste polymer recycling. However
there is a lack of methods for enhancing the interfacial interactions for WR recycling because WR contains abundant inert C―H bonds. Herein
we designed thioctic acid inverse vulcanization copolymers to endow recycled WR with dynamic disulfide interfacial interactions
significantly improving the mechanical properties of recycled WR. These disulfide interfacial interactions among the recycled WR tend to exchange
which dramatically increases the fractocohesive length and prevents stress concentration near the crack tips. When recycled WR is subjected to external stress
the loads are redistributed across a broad region of adjacent regions instead of being concentrated on a limited length scale
which resists crack propagation. This work effectively recycled WR
providing a strategy for solvent-free reaction-derived inverse vulcanization copolymers to improve the toughness of WR recycling.
Abbas-Abadi, M. S.; Kusenberg, M.; Shirazi, H. M.; Goshayeshi, B.; Van Geem, K. M. Towards full recyclability of end-of-life tires: challenges and opportunities. J. Clean. Prod. 2022 , 374 , 134036−134064..
Chittella, H.; Yoon, L. W.; Ramarad, S.; Lai, Z. W. Rubber waste management: a review on methods, mechanism, and prospects. Polym. Degrad. Stabil. 2021 , 194 , 109761−109782..
Imbernon, L.; Norvez, S. From landfilling to vitrimer chemistry in rubber life cycle. Eur. Polym. J. 2016 , 82 , 347−376..
de Sousa, F. D. B.; Zanchet, A.; Ornaghi Júnior, H. L.; Ornaghi, F. G. Revulcanization kinetics of waste tire rubber devulcanized by microwaves: challenges in getting recycled tire rubber for technical application. ACS Sustain. Chem. Eng. 2019 , 7 , 15413−15426..
de Sousa, F. D. B.; Ornaghi Júnior, H. L. From devulcanization of ground tire rubber by microwaves to revulcanization: a revulcanization kinetic approach using a simple prediction model. ACS Sustain. Chem. Eng. 2020 , 8 , 16304−16319..
Zhang, Y.; Zhang, Z.; Wemyss, A. M.; Wan, C.; Liu, Y.; Song, P.; Wang, S. Effective thermal-oxidative reclamation of waste tire rubbers for producing high-performance rubber composites. ACS Sustainable Chem. Eng. 2020 , 8 , 9079−9087..
Ma, L.; Zhai, Y.; Wan, C.; Zhang, Z.; Zhang, C.; Wang, S. Efficient thermo-oxidative reclamation of green tire rubber and silanized-silica/rubber interface characterization. Polym. Degrad. Stabil. 2022 , 196 , 109827−109832..
Saiwari, S.; Nobnop, S.; Bueraheng, Y.; Thitithammawong, A.; Hayeemasae, N.; Salaeh, S. Segregated MWCNT structure formation in conductive rubber nanocomposites by circular recycling of rubber waste. ACS Appl. Polym. Mater. 2022 , 4 , 7463−7475..
Noël, J. N.; Gaumont, A. C.; Pilard, J. F.; Dez, I. Recovery of functionalized rubber from waste tires by radical devulcanization. ACS Sustain. Chem. Eng. 2022 , 10 , 159−165..
Zheng, S.; Liao, M.; Chen, Y.; Brook, M. A. Dissolving used rubber tires. Green Chem. 2020 , 22 , 94−102..
Simon, D. Á.; Bárány, T. Microwave devulcanization of ground tire rubber and its improved utilization in natural rubber compounds. ACS Sustain. Chem. Eng. 2023 , 11 , 1797−1808..
Si, G.; Li, C.; Chen, M.; Chen, C. Polymer multi-block and multi-block+ strategies for the upcycling of mixed polyolefins and other plastics. Angew. Chem. Int. Ed. 2023 , 62 , e202311733..
Jasinska-Walc, L.; Bouyahyi, M.; Duchateau, R. Potential of functionalized polyolefins in a sustainable polymer economy: synthetic strategies and applications. Acc. Chem. Res. 2022 , 55 , 1985−1996..
Self, J. L.; Zervoudakis, A. J.; Peng, X.; Lenart, W. R.; Macosko, C. W.; Ellison, C. J. Linear, graft, and beyond: multiblock copolymers as next-generation compatibilizers. JACS Au 2022 , 2 , 310−321..
Eagan, J. M.; Xu, J.; Di Girolamo, R.; Thurber, C. M.; Macosko, C. W.; LaPointe, A. M.; Bates, F. S.; Coates, G. W. Combining polyethylene and polypropylen e: enhanced performance with PE/ i PP multiblock polymers. Science 2017 , 355 , 814−816..
Xu, J.; Eagan, J. M.; Kim, S. S.; Pan, S.; Lee, B.; Klimovica, K.; Jin, K.; Lin, T. W.; Howard, M. J.; Ellison, C. J.; LaPointe, A. M.; Coates, G. W.; Bates, F. S. Compatibilization of isotactic polypropylene ( i PP) and high-density polyethylene (HDPE) with i PP-PE multiblock copolymers. Macromolecules 2018 , 51 , 8585−8596..
Klimovica, K.; Pan, S.; Lin, T.-W.; Peng, X.; Ellison, C. J.; LaPointe, A. M.; Bates, F. S.; Coates, G. W. Compatibilization of i PP/HDPE blends with PE- g - i PP graft copolymers. ACS Macro Lett. 2020 , 9 , 1161−1166..
Shen, L.; Gorbea, G. D.; Danielson, E.; Cui, S.; Ellison, C. J.; Bates, F. S. Threading-the-needle: compatibilization of HDPE/ i PP blends with butadiene-derived polyolefin block copolymers. Proc. Natl. Acad. Sci. U.S.A. 2023 , 120 , e2301352120..
Zervoudakis, A. J.; Sample, C. S.; Peng, X.; Lake, D.; Hillmyer, M. A.; Ellison, C. J. Dihydroxy polyethylene additives for compatibilization and mechanical recycling of polyethylene terephthalate/polyethylene mi xed plastic waste. ACS Macro Lett. 2022 , 11 , 1396−1402..
Williamson, J. B.; Lewis, S. E.; Johnson III, R. R.; Manning, I. M.; Leibfarth, F. A. C-H functionalization of commodity polymers. Angew. Chem. Int. Ed. 2019 , 58 , 8654−8668..
Neidhart, E. K.; Hua, M.; Peng, Z.; Kearney, L. T.; Bhat, V.; Vashahi, F.; Alexanian, E. J.; Sheiko, S. S.; Wang, C.; Helms, B. A.; Leibfarth, F. A. C-H functionalization of polyolefins to access reprocessable polyolefin thermosets. J. Am. Chem. Soc. 2023 , 145 , 27450−27458..
Fazekas, T. J.; Alty, J. W.; Neidhart, E. K.; Miller,A. S.; Leibfarth, F. A.; Alexanian, E. J. Diversification of aliphatic C-H bonds in small molecules and polyolefins through radical chain transfer. Science 2022 , 375 , 545−550..
Chung, W. J.; Griebel, J. J.; Kim, E. T.; Yoon, H.; Simmonds, A. G.; Ji, H. J.; Dirlam, P. T.; Glass, R. S.; Wie, J. J.; Nguyen, N. A.; Guralnick, B. W.; Park, J.; Somogyi, A.; Theato, P.; Mackay, M. E.; Sung, Y. E.; Char, K.; Pyun, J. The use of elemental sulfur as an alternative feedstock for polymeric materials. Nat. Chem. 2013 , 5 , 518−524..
Jia, J.; Liu, J.; Wang, Z. Q.; Liu, T.; Yan, P.; Gong, X. Q.; Zhao, C.; Chen, L.; Miao, C.; Zhao, W.; Cai, S. D.; Wang, X. C.; Cooper, A. I.; Wu, X.; Hasell, T.; Quan, Z. J. Photoinduced inverse vulcanization. Nat. Chem. 2022 , 14 , 1249−1257..
Deng, Y.; Huang, Z.; Feringa, B. L.; Tian, H.; Zhang, Q.; Qu, D. H. Converting inorganic sulfur into degradable thermoplastics and adhesives by copolymerization with cyclic disulfides. Nat. Commun. 2024 , 15 , 3855..
Hou,K. X.; Zhao, P. C.; Duan, L.; Fan, M.; Zheng, P.; Li, C. H. Bitumen-like polymers prepared via inverse vulcanization with shear stiffening and self-healing abilities for multifunctional applications. Adv. Funct. Mater. 2023 , 33 , 2306886..
Yan, P.; Zhao, W.; Zhang, B.; Jiang, L.; Petcher, S.; Smith, J. A.; Parker, D. J.; Cooper, A. I.; Lei, J.; Hasell, T. Inverse vulcanized polymers with shape memory, enhanced mechanical properties, and vitrimer behavior. Angew. Chem. Int. Ed. 2020 , 59 , 13371−13378..
Lee, T.; Dirlam, P. T.; Njardarson, J. T.; Glass, R. S.; Pyun, J. Polymerizations with elemental sulfur: from p etroleum refining to polymeric materials. J. Am. Chem. Soc. 2022 , 144 , 5−22..
Bao, J.; Martin, K. P.; Cho, E.; Kang, K. S.; Glass, R. S.; Coropceanu, V.; Bredas, J. L.; Parker, W. O., Jr.; Njardarson, J. T.; Pyun, J. On the mechanism of the inverse vulcanization of elemental sulfur: structural characterization of poly(sulfur-random-(1,3-diisopropenylbenzene)). J. Am. Chem. Soc. 2023 , 145 , 12386−12397..
Wu, X.; Smith, J. A.; Petcher, S.; Zhang, B.; Parker, D. J.; Griffin, J. M.; Hasell, T. Catalytic inverse vulcanization. Nat. Commun. 2019 , 10 , 647−655..
Huang, Y.; Liu, Y.; Si, G.; Tan, C. Self-healing and recyclable vulcanized polyisoprene based on a sulfur-rich copolymer cross-linking agent derived from inverse vulcanization. ACS Sustain. Chem. Eng. 2024 , 12 , 2212−2224..
Wang, D.; Tang, Z.; Liu, Y.; Guo, B. Crosslinking diene rubbers by using an inverse vulcanised co-polymer. Green Chem. 2020 , 22 , 7337−7342..
Yu, S.; Tang, Z.; Wang, D.; Guo, B.; Zhang, L. Toughening r ubber by in situ construction of hierarchical coordination complexes with a sulfur-based ionomer. Macromolecules 2024 , 57 , 10120−10129..
Ni, Q.; Wu, J.; Kong, P.; Wang, Y.; Li, Y.; Li, Y.; Peng, X. Inverse vulcanization polymer-modified Eucommia ulmoides gum with enhanced shape memory capability and sound absorption property. ACS Appl. Polym. Mater. 2022 , 4 , 4689−4698..
Wang, D.; Tang, Z.; Huang, R.; Duan, Y.; Wu, S.; Guo, B.; Zhang, L. Interface coupling in rubber/carbon black composites toward superior energy-saving capability enabled by amino-functionalized polysulfide. Chem. Mater. 2023 , 35 , 764−772..
Wang, D.; Tang, Z.; Fang, S.; Wu, S.; Zeng, H.; Wang, A.; Guo, B. The use of inverse vulcanised polysulfide as an intelligent interfacial modifier in rubber/carbon black composites. Carbon 2021 , 184 , 409−417..
Wang, D.; Tang, Z.; Huang, R.; Li, H.; Zhang, C.; Guo, B. Inverse vulcanization of vinyltriethoxysilane: a novel interfacial coupling agent for silica-filled rubber composites. Macromolecules 2022 , 55 , 8485−8494..
Wang, D.; Chen, J.; Tang, Z.; Huang, R.; Xiao, Y.; Chen, J.; Yin, P.; Guo, B.; Zhang, L. Exploring epoxy-functionalized polysulfide as a VOC-free and highly effective interfacial modifier for silica-filled rubber composites. Macromolecules 2024 , 57 , 470−480..
[Zhang, X.; Waymouth, R. M. 1,2-Dithiolane-derived dynamic, covalent materials: cooperative self-assembly and reversible cross-linking. J. Am. Chem. Soc . 2017, 139 , 3822-3833..
Wiita, A. P.; Ainavarapu, S. R. K.; Huang, H. H.; Fernandez, J. M. Force-dependent chemical kinetics of disulfide bond reduction observed with single-molecule techniques. Proc. Natl. Acad. Sci. U.S.A. 2006 , 103 , 7222−7227..
Guerre, M.; Taplan, C.; Winne, J. M.; Du Prez, F. E. Vitrimers: directing chemical reactivity to control material properties. Chem. Sci. 2020 , 11 , 4855−4870..
Ye, J.; Tan, S.; Deng, H.; Huang, W.; Jin, H.; Zhang, L.; Xiang, H.; Zhang, M. Self-healing and reprocessing of reclaimed rubber prepared by re-crosslinking waste natural rubber powders. Green Chem. 2023 , 25 , 6327−6335..
Xiao, Y.; Li, Q.; Yao, X.; Bai, R.; Hong, W.; Yang, C. Fatigue of amorphous hydrogels with dynamic covalent bonds. Extreme Mech. Lett. 2022 , 53 , 101679−101689..
Chen, X.; Lin, J.; Yang, H.; Tang, J. Flaw sensitivity of hydrogels with dynamic covalent bonds. Extreme Mech. Lett. 2024 , 67 , 102129..
Yang, H.; Chen, X.; Sun, B.; Tang, J.; Vlassak, J. J. Fracture tolerance induced by dynamic bonds in hydrogels. J. Mech. Phys. Solids 2022 , 169 , 105083−105097..
Deng, B.; Wang, S.; Hartquist, C.; Zhao, X. Nonlocal intrinsic fracture energy of polymerlike networks. Phys. Rev. Lett. 2023 , 131 , 228102..
Nian, G.; Kim, J.; Bao, X.; Suo, Z. Making highly elastic and tough hydrogels from doughs. Adv. Mater. 2022 , 34 , 2206577..
Kim, J.; Zhang, G.; Shi, M.; Suo, Z. Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links. Science 2021 , 374 , 212−216..
Zeng, L.; Liu, F.; Yu, Q.; Jin, C.; Yang, J.; Suo, Z.; Tang, J. Flaw-insensitive fatigue resistance of chemically fixed collagenous soft tissues. Sci. Adv. 2023 , 9 , eade7375..
Li, X.; Gong, J. P. Role of dynamic bonds on fatigue threshold of tough hydrogels. Proc. Natl. Acad. Sci. U.S.A. 2022 , 119 , e2200678119..
Yang, C.; Yin, T.; Suo, Z. Polyacrylamide hydrogels. I. Network imperfection. J. Mech. Phys. Solids 2019 , 131 , 43−55..
Chen, C.; Wang, Z.; Suo, Z. Flaw sensitivity of highly stretchable materials. Extreme Mech. Lett. 2017 , 10 , 50−57..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802046900号