

FOLLOWUS
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
qiangfu@scu.edu.cn
Received:12 September 2025,
Revised:2025-09-25,
Accepted:11 October 2025,
Published Online:18 December 2025,
Published:2025-11
Scan QR Code
Guo, Z. R.; Xue, S.; He, L.; Xie, Z. L.; Yang, T. H.; Fu, Q. Machine learning-assisted discovery of multifunctional coordination in multicomponent composites. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3479-3
Zi-Ran Guo, Sen Xue, Lu He, et al. Machine Learning-assisted Discovery of Multifunctional Coordination in Multicomponent Composites[J/OL]. Chinese Journal of Polymer Science, 2025, 431-12.
Guo, Z. R.; Xue, S.; He, L.; Xie, Z. L.; Yang, T. H.; Fu, Q. Machine learning-assisted discovery of multifunctional coordination in multicomponent composites. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3479-3 DOI:
Zi-Ran Guo, Sen Xue, Lu He, et al. Machine Learning-assisted Discovery of Multifunctional Coordination in Multicomponent Composites[J/OL]. Chinese Journal of Polymer Science, 2025, 431-12. DOI: 10.1007/s10118-025-3479-3.
The complex interactions and conflicting performance demands in multi-component composites pose significant challenges for achieving balanced multi-property optimization through conventional trial-and-error approaches. Machine learning (ML) offers a promising solution
markedly improving materials discovery efficiency. However
the high dimensionality of feature spaces in such systems has long impeded effective ML-driven feature representation and inverse design. To overcome this
we present an Intelligent Screening System (ISS) framework to accelerate the discovery of optimal formulations balancing four key properties in 15-component PTFE-based copper-clad laminate composites (PTFE-CCLCs). ISS adopts modular descriptors based on the physical information of component volume fractions
thereby simplifying the feature representation. By leveraging the inverse prediction capability of ML models and constructing a performance-driven virtual candidate database
ISS significantly reduced the computational complexity associated with high-dimensional spaces. Experimental validation confirmed that ISS-optimized formulations exhibited superior synergy
notably resolving the trade-off between thermal conductivity and peel strength
and outperform many commercial counterparts. Despite limited data and inherent process variability
ISS achieved an average prediction accuracy of 76.5%
with thermal conductivity predictions exceeding 90%
demonstrating robust reliability. This work provides an innovative
efficient strategy for multifunctional optimization and accelerated discovery in ultra-complex composite systems
highlighting the integration of ML and advanced materials design.
Gridyakina, A.; Kasian, N.; Chychłowski, M. S.; Kajkowska, M.; Lesiak, P. Advances in multicomponent systems: liquid crystal/nanoparticles/polymer. Mater. Today Phys. 2023 , 38 , 101258..
Huang, Y.; Ellingford, C.; Bowen, C.; McNally, T.; Wu, D.; Wan, C. Tailoring the electrical and thermal conductivity of multi-component and multi-phase polymer composites. Int. Mater. Rev. 2020 , 65 , 129−163..
Song, S.; Xu, X.; Lan, H.; Gao, L.; Lin, J.; Du, L.; Wang, Y. Design of co-cured multi-component thermosets with enhanced heat resistance, toughness, and processability via a machine learning approach. Macromol. Rapid Commun. 2024 , 45 , 2400337..
Tan, Y.; Yan, X.; Tang, C.; Lu, G.; Xie, K.; Tong, J.; Meng, F. Dielectric and thermal properties of GFs/PTFE composites with hybrid fillers of Al 2 O 3 and hBN for microwave substrate applications. J. Mater. Sci.: Mater. Electron. 2021 , 32 , 23325−23332..
Jiang, P.; Bian, J. Low dielectric loss BST/PTFE composites for microwave applications. Int. J. Appl. Ceram. Technol. 2019 , 16 , 152−159..
Pan, C.; Kou, K.; Zhang, Y.; Li, Z.; Wu, G. Enhanced through-plane thermal conductivity of PTFE composites with hybrid fillers of hexagonal boron nitride platelets and aluminum nitride particles. Compos. Part B: Eng. 2018 , 153 , 1−8..
Pan, C.; Kou, K.; Jia, Q.; Zhang, Y.; Wu, G.; Ji, T. Improved thermal conductivity and dielectric properties of hBN/PTFE composites via surface treatment by silane coupling agent. Compos. Part B: Eng. 2017 , 111 , 83−90..
He, L.; Dou, Z.; Zhang, Y.; Fu, Q.; Wu, K. Modelling effective thermal conductivity in polymer composites: a simple cubic structure approach. Compos. Sci. Technol. 2024 , 252 , 110592..
He, L.; Xu, P.; Zhang, Y.; Chai, S.; Xie, Z.; Dou, Z.; Guo, Z.; Yang, T.; Fu, Q.; Wu, K. Polytetrafluoroethylene composites for high-frequency microwave applications: balancing thermal conductivity, adhesion and dielectric properties. Compos. Sci. Technol. 2025 , 261 , 111012..
Xue, R.; Xie, Z.; Chai, S.; Yang, T.; Feng, R.; He, L.; Wu, K.; Zhang, Q.; Fu, Q. Liquid metal-modified boron nitride for polytetrafluoroethylene composites with enhanced thermal conductivity and peel strength. Compos. Sci. Technol. 2024 , 251 , 110572..
Tabor, D. P.; Roc h, L. M.; Saikin, S. K.; Kreisbeck, C.; Sheberla, D.; Montoya, J. H.; Dwaraknath, S.; Aykol, M.; Ortiz, C.; Tribukait, H.; Amador-Bedolla, C.; Brabec, C. J.; Maruyama, B.; Persson, K. A.; Aspuru-Guzik, A. Accelerating the discovery of materials for clean energy in the era of smart automation. Nat. Rev. Mater. 2018 , 3 , 5−20..
Pyzer-Knapp, E. O.; Pitera, J. W.; Staar, P. W. J.; Takeda, S.; Laino, T.; Sanders, D. P.; Sexton, J.; Smith, J. R.; Curioni, A. Accelerating materials discovery using artificial intelligence, high performance computing and robotics. npj Comput. Mater. 2022 , 8 , 1−9..
Gianti, E.; Percec, S. Machine learning at the interface of polymer science and biology: how far can we go. Biomacromolecules 2022 , 23 , 576−591..
Burger, B.; Maffettone, P. M.; Gusev, V. V.; Aitchison, C. M.; Bai, Y.; Wang, X.; Li, X.; Alston, B. M.; Li, B.; Clowes, R.; Rankin, N.; Harris, B.; Sprick, R. S.; Cooper, A. I. A mobile robotic chemist. Nature 2020 , 583 , 237−241..
Sun, Z.; Yin, H.; Yin, Z. Leveraging machine learning in the innovation of functional materials. Matter 2023 , 6 , 2553−2555..
Wang, Y.; Liu, Y.; Song, S.; Yang, Z.; Qi, X.; Wang, K.; Liu, Y.; Zhang, Q.; Tian, Y. Accelerating the discovery of insensitive high-energy-density materials by amaterials genome approach. Nat. Commun. 2018 , 9 , 2444..
Song, N.; Fan, X.; Guo, X.; Tang, J.; Li, H.; Tao, R.; Li, F.; Li, J.; Yang, D.; Yao, C.; Liu, P. A DNA/Up conversion nanoparticle complex enables controlled co-delivery of CRISPR-Cas9 and photodynamic agents for synergistic cancer therapy. Adv. Mater. 2024 , 36 , 2309534..
Bessa, M. A.; Bostanabad, R.; Liu, Z.; Hu, A.; Apley, D. W.; Brinson, C.; Chen, W.; Liu, W. K. A framework for data-driven analysis of materials under uncertainty: countering the curse of dimensionality. Comput. Methods Appl. Mech. Eng. 2017 , 320 , 633−667..
Liu, R.; Kumar, A.; Chen, Z.; Agrawal, A.; Sundararaghavan, V.; Choudhary, A. A predictive machine learning approach for microstructure optimization and materials design. Sci. Rep. 2015 , 5 , 11551..
Jin, P.; Xu, L.; Xu, G.; Li, J.; Qiu, C.; Huang, J. Deep learning-assisted active metamaterials with heat-enhanced thermal transport. Adv. Mater. 2024 , 36 , 2305791..
[Iyer, A.; Zhang, Y.; Prasad, A.;Tao, S.; Wang, Y.; Schadler, L.; Brinson, L. C.; Chen, W. Data-centric mixed-variable bayesian optimization for materials design. In Volume 2A: 45 th Design Automation Conference; American Society of Mechanical Engineers: Anaheim, California, USA , 2019 ; p. V02AT03A066..
Elton, D. C.; Boukouvalas, Z.; Fuge, M. D.; Chung, P. W. Deep learning for molecular design—a review of the state of the art. Mol. Syst. Des. Eng. 2019 , 4 , 828−849..
Dougan, M.; Dougan, S. K. Programmable bacteria as cancer therapy. Nat. Med. 2019 , 25 , 1030−1031..
Suwardi, A.; Wang, F.; Xue, K.; Han, M.; Teo, P.; Wang, P.; Wang, S.; Liu, Y.; Ye, E.; Li, Z.; Loh, X. J. Machine learning-driven biomaterials evolution. Adv. Mater. 2022 , 34 , 2102703..
Kirman, J.; Johnston, A.; Kuntz, D. A.; Askerka, M.; Gao, Y.; Todorović, P.; Ma, D.; Privé, G. G.; Sargent, E. H. Machine-learning-accelerated perovskite c rystallization. Matter 2020 , 2 , 938−947..
Sui, F.; Guo, R.; Zhang, Z.; Gu, G. X.; Lin, L. Deep reinforcement learning for digital materials design. ACS Mater. Lett. 2021 , 3 , 1433−1439..
AlFaraj, Y. S.; Mohapatra, S.; Shieh, P.; Husted, K. E. L.; Ivanoff, D. G.; Lloyd, E. M.; Cooper, J. C.; Dai, Y.; Singhal, A. P.; Moore, J. S.; Sottos, N. R.; Gomez-Bombarelli, R.; Johnson, J. A. A model ensemble approach enables data-driven property prediction for chemically deconstructable thermosets in the low-data regime. ACS Cent. Sci. 2023 , 9 , 1810−1819..
Chen, F.; Weng, L.; Wang, J.; Wu, P.; Ma, D.; Pan, F.; Ding, P. An adaptive framework to accelerate optimization of high flame retardant composites using machine learning. Compos. Sci. Technol. 2023 , 231 , 109818..
Zhao, W.; Fu, X.; Xu, X.; Zhang, L.; Wang, L.; Lin, J.; Hu, Y.; Gao, L.; Du, L.; Tian, X. Design of multicomponent thermosetting polymers with enhanced tensile properties through active learning. Compos. Sci. Technol. 2024 , 256 , 110779..
Zhang, T.; Manafi Khajeh Pasha, A.; Mohammad Sajadi, S.; Jasim, D. J.; Nasajpour-Esfahani, N.; Maleki, H.; Salahshour, S.; Baghaei, S. Optimization of thermophysical properties of nanofluids using a hybrid procedure based on machine learning, multi-objective optimization, and multi-criteria decision-making. Chem. Eng. J. 2024 , 485 , 150059..
Chew, A. K.; Afzal, M. A. F.; Chandrasekaran, A.; Kamps, J. H.; Ramakrishnan, V. Designing the next generation of polymers with machine learning and physics-based models. Mach. Learn.: Sci. Technol. 2024 , 5 , 045031..
Deng, W.; Liu, L.; Li, X.; Huang, Y.; Hu, M.; Zheng, Y.; Yin, Y.; Huan, Y.; Cui, S.; Sun, Z.; Jiang, J.; Yang, X.; Wang, D. Machine-learning-enhanced trial-and-error for efficient optimization of rubber composites. Adv. Mater. 2025 , 37 , 2407763..
Bonke, S. A.; Trezza, G.; Bergamasco, L.; Song, H.; Rodríguez-Jiménez, S.; Hammarström, L.; Chiavazzo, E.; Reisner, E. Multi-variable multi-metric optimization of self-assembled photocatalytic CO 2 reduction performance using machine learning algorithms. J. Am. Chem. Soc. 2024 , 146 , 15648−15658..
Zhang, H.; Fu, H.; Zhu, S.; Yong, W.; Xie, J. Machine l earning assisted composition effective design for precipitation strengthened copper alloys. Acta Mater. 2021 , 215 , 117118..
Bassman Oftelie, L.; Rajak, P.; Kalia, R. K.; Nakano, A.; Sha, F.; Sun, J.; Singh, D. J.; Aykol, M.; Huck, P.; Persson, K.; Vashishta, P. Active learning for accelerated design of layered materials. npj Comput. Mater. 2018 , 4 , 74..
Cao, Z.; Lu, S.; Yuan, S.; Ma, L.; Zhou, Q.; Wang, J. Active learning for accelerated discovery of two-dimensional magnetic topological materials. Chem. Mater. 2025 , 37 , 6227−6236..
Kusne, A. G.; Yu, H.; Wu, C.; Zhang, H.; Hattrick-Simpers, J.; DeCost, B.; Sarker, S.; Oses, C.; Toher, C.; Curtarolo, S.; Davydov, A. V.; Agarwal, R.; Bendersky, L. A.; Li, M.; Mehta, A.; Takeuchi, I. On-the-fly closed-loop materials discovery via bayesian active learning. Nat. Commun. 2020 , 11 , 5966..
Xu, X.; Zhao, W.; Hu, Y.; Wang, L.; Lin, J.; Qi, H.; Du, L. Discovery of thermosetting polymers with low hygroscopicity, low thermal expansivity, and high modulus by machine learning. J. Mater. Chem. A 2023 , 11 , 12918−12927..
Hu, Y.; Zhao, W.; Wang, L.; Lin, J.; Du, L. Machine-learning-assisted design of highly tough thermosetting polymers. ACS Appl. Mater. Interfaces 2022 , 14 , 55004−55016..
Zhao, G.; Xu, T.; Fu, X.; Zhao, W.; Wang, L.; Lin, J.; Hu, Y.; Du, L. Machine-learning-assisted multiscale modeling strategy for predicting mechanical properties of carbon fiber reinforced polymers. Compos. Sci. Technol. 2024 , 248 , 110455..
Pardakhti, M.; Moharreri, E.; Wanik, D.; Suib, S. L.; Srivastava, R. Machine learning using combined structural and chemical descriptors for prediction of methane adsorption performance of metal organic frameworks (MOFs). ACS Comb. Sci. 2017 , 19 , 640−645..
Damewood, J.; Karaguesian, J.; Lunger, J. R.; Tan, A. R.; Xie, M.; Peng, J.; Gómez-Bombarelli, R. Representations of materials for machinelearning. Annu. Rev. Mater. Res. 2023 , 53 , 399−426..
Roy Chowdhury, P.; Khot, K.; Song, J.; He, Z.; Kortge, D.; Han, Z.; Bermel, P.; Wang, H.; Ruan, X. Machine learning designed and experimentally confirmed enhanced reflectance in aperiodic multilayer structures. Adv. Opt. Mater. 2024 , 12 , 2300610..
Khot, K.; Chowdhury, P. R.; Ruan, X. Machine learning-based design optimization of aperiodic multilayer coatings for enhanced solar reflection. Int. J. Heat Mass Transf. 2024 , 224 , 125303..
Xiong, X.; Wang, C.; Wang, F.; Cui, X.; Li, G. Optimization of process parameters for induction welding of composite materials based on NSGA-II and BP Neural Network. Mater. Today Commun. 2022 , 33 , 104749..
Dev, B.; Rahman, M. A.; Islam, Md. J.; Rahman, M. Z.; Zhu, D. Properties prediction of composites based on machine learning models: a focus on statistical index approaches. Mater. Today Commun. 2024 , 38 , 107659..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802046900号