

FOLLOWUS
a.State Key Laboratory of Bioinspired Interfacial Materials Science, Center for Bioinspired Science and Technology, Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China
b.Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
huangjin2018@buaa.edu.cn (J.H.)
liumj@buaa.edu.cn (M.J.L.)
Received:21 September 2025,
Accepted:08 October 2025,
Published Online:15 January 2026,
Published:2025-12
Scan QR Code
Shi, W.; Zhang, Z. Z.; Li, Y.; Peng, C. Y.; Zha, H.; Huang, J.; Liu, M. J. High energy dissipation polymer gels by regulating relaxation of confined chains. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3475-7
Wei Shi, Zong-Zheng Zhang, Ying Li, et al. High Energy Dissipation Polymer Gels by Regulating Relaxation of Confined Chains[J/OL]. Chinese Journal of Polymer Science, 2025, 431-12.
Shi, W.; Zhang, Z. Z.; Li, Y.; Peng, C. Y.; Zha, H.; Huang, J.; Liu, M. J. High energy dissipation polymer gels by regulating relaxation of confined chains. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3475-7 DOI:
Wei Shi, Zong-Zheng Zhang, Ying Li, et al. High Energy Dissipation Polymer Gels by Regulating Relaxation of Confined Chains[J/OL]. Chinese Journal of Polymer Science, 2025, 431-12. DOI: 10.1007/s10118-025-3475-7.
Composite structure of viscous fluids and elastic skeletons in biological tissues inspired designs of high energy dissipation gels by viscoelastic regulation of networks and confined chains. We summarized progress of damping gels from perspective of network structure
which will promote development of damping polymers towards extreme conditions.
Damping polymers relying on significant internal friction in glass transition regions can suppress vibrations and noise; however
these materials generally exhibit a narrow damping breadth and severe mechanical instability. Natural damping tissues such as the skin and cartilage achieve high energy dissipation through the combination of viscous fluid and a 3D elastic skeleton. This binary structure inspired a high energy dissipation gel design strategy using synergistic viscoelastic scheme of confined chains and host network. Herein
we provide a comprehensive overview of recent advances in bio-inspired damping polymer gels. The structural designs and their corresponding performances are elucidated in this review. We anticipate that this review will motivate further exploration of design and applications of damping polymers.
Qatu, M.; Abdelhamid, K.; Pang, J.; Sheng, G. Overview of automotive noise and vibration. Int. J. Veh. Noise Vib. 2009 , 5 , 1−35..
Krajnak, K. Health effects associated with occupational exposure to hand-arm or whole bodyvibration. J. Toxicol. Environ. Health Part B 2018 , 21 , 320−334..
Chu, J.; Zhou, G.; Liang, X.; Liang, H.; Yang, Z.; Chen, T. A metamaterial for low-frequency vibration damping. Mater. Today Commun. 2023 , 36 , 106464..
Treviso, A.; Van Genechten, B.; Mundo, D.; Tournour, M. Damping i n composite materials: properties and models. Compos. Part B Eng. 2015 , 78 , 144−152..
Sujon, M. A. S.; Islam, A.; Nadimpalli, V. K. Damping and sound absorption properties of polymer matrix composites: a review. Polym. Test. 2021 , 104 , 107388..
Finegan I.; Gibson, R. Recent research on enhancement of damping in polymer composites. Compos. Struct. 1999 , 44 , 89−98..
Lipson; J. Global and local views of the glass transition in mixtures. Macromolecules 2020 , 53 , 7219−7223..
Colombini, D.; Maurer, F. Origin of additional mechanical transitions in multicomponent polymeric materials. Macromolecules 2002 , 35 , 5891−5902..
Syahrom, A.; Kadir, M. R. A.; Abdullah, J.; Öchsner, A. Permeability studies of artificial and natural cancellous bone structures. Med. Eng. Phys. 2013 , 35 , 792−799..
Kadir, M. R. A.; Syahrom, A.; Öchsner, A. Finite element analysis of idealised unit cell cancellous structure based on morphological indices of cancellous bone. Med. Biol. Eng. Comput. 2010 , 48 , 497−505..
Gu, X.; Wang, L.; Guan, X.; Wang, Y.; Cheng, Y.; Wu, Y. Advances in the design, preparation and application of biomimetic damping materials. Giant 2024 , 19 , 100321..
Hodaei, M.; Mandelis, A. Quantitative osteoporosis diagnosis of porous cancellous bone using poroelastodynamic modal analysis. J. Acoust. Soc. Am. 2023 , 154 , 3101−3124..
Kramer, M. O. The dolphin’s secret. J. Am. Soc. Nav. Eng. 1961 , 73 , 103−108..
Mu, R.; Yang, J.; Wang, Y.; Wang, Z.; Chen, P.; Sheng, H.; Suo, Z. Polymer-filled macroporous hydrogel for low friction. Extreme Mech. Lett. 2020 , 38 , 100742..
Osaheni, A. O.; Finkelstein, E. B.; Mather, P. T.; Blum, M. M. Synthesis and characterization of a zwitterionic hydrogel blend with low coefficient of friction. Acta Biomater. 2016 , 46 , 245−255..
Xu, Y.; Rong, Q.; Zhao, T.; Liu, M. Anti-freezing multiphase gel materials: bioinspired design strategies and applications. Giant 2020 , 2 , 100014..
Li, X.; Gong, J. P. Design principles for strong and tough hydrogels. Nat. Rev. Mater. 2024 , 9 , 380−398..
Zhang, Y. S.; Khademhosseini, A. Advances in engineering hydrogels. Science 2017 , 356 , eaaf3627..
Huang, J.; Xu, Y.; Qi, S.; Zhou, J.; Shi, W.; Zhao, T.; Liu, M. Ultrahigh energy-dissipation elastomers by precisely tailoring the relaxation of confined polymer fluids. Nat. Commun. 2021 , 12 , 3610..
Draper, E. R.; Adams, D. J. Controlling supramolecular gels. Nat. Mater. 2024 , 23 , 13−15..
Dong, J.; Zhao, Z.; Li, C. Mechanically adaptive materials based on dynamic chemical bonds. Chem. Eur. J. 2025 , 31 , e202404397..
Xing, Z.; Shu, D.; Lu, H.; Fu, Y. Untangling the mechanics of entanglements in slide-ring gels towards both super-deformability and toughness. Soft Matter 2022 , 18 , 1302−1309..
Behbahani, A. F.; Schmid, F. Relaxation dynamics of entangled linear polymer melts via molecular dynamics simulations. Macromolecules 2025 , 8 , 767−786..
Huang, J.; Zhou, H.; Zhang, L.; Zhang, L.; Shi, W.; Yang, Y.; Zhou, J.; Zhao, T.; Liu, M. Full-scale polymer relaxation induced by single-chain confinement enhances mechanical stability of nanocomposites. Nat. Commun. 2024 , 15 , 6747..
Xia, L.; Li, C.; Zhang, X.; Wang, J.; Wu, H.; Guo, S. Effect of chain length of polyisobutylene oligomers on the molecular motion modes of butyl rubber: damping property. Polymer 2018 , 141 , 70−78..
Lu, Y.; Hu, G. Linear polymer chain diffusion in semi-flexible polymer network: a dissipative particle dynamics study. Phys. Fluids 2023 , 35 , 012007..
Feng, Q.; He, L.; Wu, L.; Li, J.; Zhang, J.; Guo, S. High energy-dissipation PDMS polymer-fluid-gels over an ultra-wide temperature range. Chem. Eng. J. 2024 , 491 , 152108..
Li, M.; Zhang, J.; Wu, C.; Zhu, R.; Chen, W.; Duan, C.; Lu, X. Effects of silicone oil on stiffness and damping of rubber-silicone oil combined damper for reducing shaft vibration. IEEE Access 2020 , 8 , 218554−218564..
Huang, J.; Zhou, H.; Zhang, L.; Zha, H.; Shi, W.; Zhao, T.; Liu, M. Bioinspired stiff-soft gradient network structure for high-performance impact-resistant elastomers. Giant 2024 , 19 , 100320..
Chen, G.; Wu, J.; Wang, Z.; Zhu, H.; Zhu, S.; Zhang, Q. Armored polymer-fluid gels with integrated damping and impact protection across broad temperatures. Sci. Adv. 2025 , 11 , eadv5292..
Yang, Z.; Yang, Y.; Liang, H.; He, E.; Xu, H.; Liu, Y.; Wang, Y.; Wei, Y.; Ji, Y. Robust liquid crystal semi-interpenetrating polymer network with superior energy-dissipation performance. Nat. Commun. 2024 , 15 , 9902..
Wang, W.; Zhou, W.; Shi, H.; He, D.; Pang, Y.; Zeng, X.; Li, C. Soft and thermally conductive gels by introducing free-movable polymer chains into network. Polymer 2023 , 267 , 125642..
Wang, Q.; Schlenoff, J. B. The polyelectrolyte complex/coacervate continuum. Macromolecules 2014 , 47 , 3108−3116..
Meng, S.; Ting, J. M.; Wu, H.; Tirrell, M. V. Solid-to-liquid phase transition in polyelectrolyte complexe. Macromolecules 2020 , 53 , 7944−7953..
Xue, Y.-C.; Yang, Y.-M.; Jia, D. Interplay between microscopic structures and macroscopic viscoelastic properties of polyampholyte gels. Chinese J. Polym. Sci. 2024 , 42 , 1360−1367..
Wang, G. K.; Yang, Y. M.; Jia, D. Programming viscoelastic properties in a complexation gel composite by utilizing entropy-driven topologically frustrated dynamical state. Nat. Commun. 2024 , 15 , 3569..
Wang, Z.; Cui, H.; Liu, M.; Grage, S. L.; Hoffmann, M.; Sedghamiz, E.; Wenzel, W.; Levkin, P. A. Tough, transparent, 3D-printable, and self-healing poly(ethylene glycol)-gel (PEGgel). Adv. Mater. 2022 , 34 , 2107791..
Chen, L.; Chai, J.; Zhang, L.; Zhou, J.; Huang, J.; Liu, M. High-strength shape-memory ionogels with controllable metastable state for high-work-density actuation. CCS Chem. 2025 , 7 , 2086−2097..
Zhuo, S.; Zhao, Z.; Xie, Z.; Hao, Y.; Xu, Y.; Zhao, T.; Li, H.; Knubben, E. M.; Wen, L.; Jiang, L.; Liu, M. Complex multiphase organohydrogels with programmable mechanics toward adaptive soft-matter machines. Sci. Adv. 2020 , 6 , eaax1464..
Bernhard, S.; Tibbitt, M. W. Supramolecular engineering of hydrogels for drug delivery. Adv. Drug Deliver. Rev. 2021 , 171 , 240−256..
Peng, H.; Zhu, W.; Guo, W.; Li, Q.; Ma, S.; Bucher, C.; Liu, B.; Ji, X.; Huang, F.; Sessler, J. L. Supramolecular polymers: recent advances based on the types of underlying interactions. Prog. Polym. Sci. 2023 , 137 , 101635..
Chen, L.; Zhao, C.; Duan, X.; Zhou, J.; Liu, M. Finely tuning the lower critical solution temperature of ionogels by regulating the polarity of polymer networks and ionic liquids. CCS Chem. 2022 , 4 , 1386−1396..
Chen, Y.; Sun, S.; Lu, D.; Shi, Y.; Yao, Y. Water-soluble supramolecular polymers constructed by macrocycle-based host-guest interactions. Chin. Chem. Lett. 2019 , 30 , 37−43..
Rong, Q.; Lei, W.; Chen, L.; Yin, Y.; Zhou, J.; Liu, M. Anti-freezing, conductive self-healing organohydrogels with stable strain-sensitivity at subzero temperatures. Angew. Chem. Int. Ed. 2017 , 56 , 14159−14163..
Zhao, J.; Zhang, Z.; Cheng, L.; Bai, R.; Zhao, D.; Wang, Y.; Yu, W.; Yan, X. Mechanically interlocked vitrimers. J. Am. Chem. Soc. 2022 , 144 , 872−882..
Li, Y.; Zhu, C.; Dong, Y.; Liu, D. Supramolecular hydrogels: mechanical strengthening with dynamics. Polymer 2020 , 210 , 122993..
Shi, W.; Zhou, T.; He, B.; Huang, J.; Liu, M. Dynamic-bond-mediated chain reptation enhances energy dissipation of elastomers. Angew. Chem. Int. Ed. 2024 , 63 , e202401845..
Xu, D.; Olsen, B. D.; Craig, S. L. Relaxation dynamics of supramolecular polymer networks with mixed cross-linkers. J. Rheol. 2022 , 66 , 1193−1201..
[Shi, W.; Huang, J.; Peng, C.; Zhao, X.; Li, Y.; Zhang, Z.; Zhu, X.; Liu, M. Cellular-skeleton-hosting polymer fluid gels with high damping and mechanical stability over an ultra-wide frequency breadth. Matter DOI: 10.1016/j.matt.2025.102373.
Zhao, J.; Jiang, N.; Zhang, D.; He, B.; Chen X. Study on optimization of damping performance and damping temperature range of silicone rubber by polyborosiloxane gel. Polymers 2020 , 12 , 1196..
Zhao, C.; Gong, X.; Wang, S.; Jiang, W.; Xuan, S. Shear stiffening gels for intelligent anti-impact applications. Cell Rep. Phy. Sci. 2020 , 1 , 100266..
Zhang, S.; Wang, S.; Hu, T.; Xuan, S.; Jiang, H.; Gong, X. Study the safeguarding performance of shear thickening gel by the mechanoluminescence method. Compos. Part B Eng. 2020 , 180 , 107564..
Tang, M.; Zheng, P.; Wang, K.; Qin, Y.; Jiang, Y.; Cheng, Y.; Li, Z.; Wu, L. Autonomous self-healing, self-adhesive, highly conductive composites based on a silver-filled polyborosiloxane/polydimethylsiloxane double-network elastomer. J. Mater. Chem. A 2019 , 7 , 27278−27288..
Wu, Q.; Xiong, H.; Peng, Y.; Yang, Yi.; Kang, J.; Huang, G.; Ren, X.; Wu, J. Highly stretchable and self-healing “solid−liquid” elastomer with strain-rate sensing capability. ACS Appl. Mater. Interfaces 2019 , 11 , 19534−19540..
Wu, T.; Chen, B. Synthesis of multiwalled carbon nanotube-reinforced polyborosiloxane nanocomposites with mechanically adaptive and self-healing capabilities for flexible conductors. ACS Appl. Mater. Interfaces 2016 , 8 , 24071−24078..
Huang, X.; Nakagawa, S.; Houjou, H.; Yoshie, N. Insights into the role of hydrogen bonds on the mechanical properties of polymer networks. Macromolecules 2021 , 54 , 4070−4080..
Xu, K.; Zhang, F.; Zhang, X.; Hu, Q.; Wu, H.; Guo, S. Molecular insights into hydrogen bonds in polyurethane/hindered phenol hybrids: evolution and relationship with damping properties. J. Mater. Chem. A 2014 , 2 , 8545−8556..
Zhang, Q.; Xu, Z.-Y.; Liu, W.-G. Hydrogen-bonding crosslinked supramolecular polymer materials: from design evolution of side-chain hydrogen-bonding to applications. Chinese J. Polym. Sci. 2024 , 42 , 1619−1641..
Dong, H.; Zhang, Y. Robust thermally conductive and damping rubbers with recyclable and self-healable capability. Compos. Part A Appl. Sci. Manuf. 2023 , 175 , 107783..
Luo, J.; Jin, Y.; Li, L.; Chang, B.; Zhang, B.; Li, K.; Li, Y.; Zhang, Q.; Wang, H.; Wang, J.; Yin, S.; Wang, H.; Hou, C. A selective frequency damping and Janus adhesive hydrogel as bioelectronic interfaces for clinical trials. Nat. Commun. 2024 , 15 , 8478..
Lu, S.; Luo, J.; Qu, L.; Li, K.; Li, Y.; Zhang, Q.; Wang, H.; Hou, C. A damping hydrogel with high water retention and strong adhesion for precise bioelectric signal detection. J. Mater. Chem. C 2025 , 13 , 12287..
Park, B.; Shin, J. H.; Ok, J.; Park, S.; Jung, W.; Jeong, C.; Choy, S.; Jo, Y. J.; Kim, T. Cuticular pad-inspired selective frequency damper for nearly dynamic noise–free bioelectronics. Science 2022 , 376 , 624−629..
Xu, Q.-J.; Yuan, Z.-Y.; Wang, C. C.; Liang, H.; Shi, Y.; Wu, H.-T.; Xu, H.; Zheng, J.; Wu, J. R. Tough semi-interpenetrating polyvinylpyrrolidone/polyacrylamide hydrogels enabled by bioinspired hydrogen-bonding induced phase separation. Chinese J. Polym. Sci. 2024 , 42 , 591−603..
Du, G.; Zhao, J.; Shao, Y.; Liu, T.; Luo, B.; Zhang, S.; Chi, M.; Cai, C.; Liu, Z.; Wang, S.; Nie, S. A self-damping triboelectric tactile patch for self-powered wearable electronics. eScience 2025 , 5 , 100324..
Varanges, V.; Rana, V. K.; Phillippe, V.; Bourban, P.-E.; Pioletti, D. P. Development and performance evaluation of hybrid iono-organogels for efficient impact mitigation. ACS Appl. Eng. Mater. 2024 , 2 , 2369−2378..
Huang, X.; Li, L.; Zhu, H.; Lv, T.; Tang, L.; Shentu, Z.; Li, H.; Gao, T.; Zhang, K.; Hu, J.; Wang, W.; Xue, B.; Lei, H.; Cao, Y. Designing high-damping, o ptically clear ionogels through competitive binding for flexible and impact-resistant applications. ACS Appl. Mater. Interfaces 2025 , 17 , 9830−9840..
Mrozek, R. A.; Berg, M. C.; Gold, C. S.; Leighliter, B.; Morton, J. T.; Lenhart, J. L. Highly compliant shape memory polymer gels for tunable damping and reversible adhesion. Smart Mater. Struct. 2016 , 25 , 025004..
Wang, H.;Wang, H.; Chen, D.; Tian, X.; Yang, J.; Liu, W. Solvent polarity-induced ultrahigh strength supramolecular polyzwitterionic organogels with impact-stiffening, damping, and anti-freezing properties. Small 2025 , 21 , 2501737..
Zhan, S.; Lin, S.; Zhao, X.; Karnik, R. Thermodynamic analysis and material design to enhance chemo-mechanical coupling in hydrogels for energy harvesting from salinity gradients. J. Appl. Phys. 2020 , 128 , 044701..
Itagaki; Hideyuki; Nakatani, Y. The role of solvent molecules in the physical gelation of isotactic polystyrene in cis-and trans-decalin. Macromolecules 1997 , 30 , 7793−7797..
Tetsuya, Y.; Yuichi, M.; Masao, D. Relaxation dynamics of the normal stress of polymer gels. Macromolecules 2017 , 50 , 5208−5213..
Huo, L.-J.; Qu, K.-R.; Yang, Z.-Z.; Jia, D. Dynamics of charged ring polymers under gel confinement. Chinese J. Polym. Sci. 2025 , 43 , 399−405..
Wu, Y.; Wang, Y.; Guan, X.; Zhang, H.; Guo, R.; Cui, C.; Zhang, Y.; Wu, D.; Cheng, Y.; Ge, Z.; Zheng, Y.; Zhang, Y. Molecular clogging organogels with excellent solvent maintenance, adjustable modulus, and advanced mechanics for impact protection. Adv. Mater. 2023 , 35 , 2306882..
Cheng, J.; Fu, S.; Ma, S.; Zhang, Z.; Ma, C.; Zhang, G. Sterically hindered organogels with self-healing, impact response, and high damping properties. Adv. Mater. 2024 , 36 , 2411700..
Zhang, B.; Zhang, P.; Zhang, G.; Ma, C.; Zhang, G. Sterically hindered oleogel-based underwater adhesive enabled by mesh-tailoring strategy. Adv. Mater. 2024 , 36 , 2313495..
Han, L.; Qi, W.; Liu, K.; Wu, P. Multi-armed molecule drives high e nergy dissipation and stiffness via physically cross-linking. Small 2025 , 21 , 2503823..
Xing, Z. A spontaneous equilibrium free energy model for rubber elasticity of slide-ring materials to understand pulley effect and dangling effect. Polymer 2025 , 328 , 128451..
Wang, Y.; Lu, H.; Jia, X.; Shi, A.; Zhou, J.; Zhang, G.; Liu, H. Entropy-induced localization and sliding dynamics of rings on polyrotaxane. Macromolecules 2024 , 57 , 1846−1858..
Ando, S.; Ito, K. Recent progress and future perspective in slide-ring based polymeric materials. Macromolecules 2025 , 58 , 2157−2177..
Wang, W.; Zhao, D.; Yang, J.; Nishi, T.; Ito, K.; Zhao, X.; Zhang, L. Novel slide-ring material/natural rubber composites with high damping property. Sci. Rep. 2016 , 6 , 22810..
Song, R.; Liu, Z.; Geng, X.; Ye, L.; Zhang, A.; Feng, Z. Preparation and characterization of cross-linked polyurethanes using β-CD [3 ] PR as slide-ring cross-linker. Polymer 2022 , 249 , 1 24862..
Xu, Z.; Lu, J.; Lu, D.; Li, Y.; Lei, H.; Chen, B.; Li, W.; Xue, B.; Cao, Y.; Wang, W. Rapidly damping hydrogels engineered through molecular friction. Nat. Commun. 2024 , 15 , 4895..
Rhode, A. R.; Montes de Oca, I.; Chabinyc, M. L.; Bates, C. M.; Pitenis, A. A. Sliding on slide-ring gels. Tribol. Lett. 2024 , 72 , 121..
Cafagno, D.; Silvi, S.; Tibbitt, M. W.; Mommer, S. Photoresponsive slide-ring gels enable modulation of sliding dynamics. Angew. Chem. Int. Ed. 2025 , 64 , e202507073..
Zhang, Z.; Hou, G.; Shen, J.; Liu, J.; Gao, Y.; Zhao, X.; Zhang, L. Designing the slide-ring polymer network with both good mechanical and damping properties via molecular dynamics simulation. Polymers 2018 , 10 , 964..
Yang, X.; Cheng, L; Zhang, Z.; Zhao, J.; Bai, R.; Guo, Z.; Yu, W.; Yan, X. Amplification of integrated microscopic motions of high-density [2 ] rotaxanes in mechanically interlocked networks. Nat. Commun. 2022 , 13 , 6654..
Chen, L.; Liu, Y.; You, W.; Wang, J.; He, Z.; Mei, H.; Yang, X.; Yu, W.; Li, G.; Huang, F. Construction of slide-ring polymers based on pillar[5 ] arene/alkyl chain host−guest interactions. Angew. Chem. Int. Ed. 2025 , 64 , e202417713..
Yang, M.; Li, J.; Wang, C.; Yang, L.; Fan, Z.; Wang, W.; Liu, G.; Cheng, L.; Qu, S.; Zhang, Z.; Zou, J.; Yu, W.; Gu, G.; Yan X. Robust mechanically interlocked network ionogels. Angew. Chem. Int. Ed. 2025 , 64 , e202423847..
[Hart, L.; Lenart, W.; Hertzog, J.; Oh, J.; Turner, W.; Dennis, J.; Rowan, S. Doubly threaded slide-ring polycatenane networks. J. Am. Chem. Soc . 2023 , 145 12315–12323..
Ge, M.; Zhang, L. Ultrastretchable hydrogels with strong damping effects. Polym. J. 2024 , 56 , 599−607..
Zhou, G.; Sun, L. Smart colloidal dampers with on-demand controllable damping capability. Smart Mater. Struct. 2008 , 17 , 055023..
Zhang, C.; Wang, Z.; Zhu, H.; Zhang, Q.; Zhu, S. Dielectric gels with microphase separation for wide-range and self-damping pressure sensing. Adv. Mater. 2024 , 36 ,2308520..
Jose, R. R.; Elia, R.; Tien, L. W.; Kaplan, D. L. Electroresponsive aqueous silk protein as “smart” mechanical damping fluid. ACS Appl. Mater. Interfaces 2014 , 6 , 6212−6216..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802046900号