

FOLLOWUS
a.Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
b.Zhejiang Key Laboratory of Bio-based Health Functional Fiber Materials, College of Material and Textile Engineering, Jiaxing University, Jiaxing 314001, China
jz09275@zjxu.edu.cn (J.Z.)
gml@ustc.edu.cn (G.M.L.)
Received:16 July 2025,
Accepted:27 September 2025,
Published Online:19 November 2025,
Published:15 December 2025
Scan QR Code
Mei, G. T.; Huang, Y.; Zhang, J.; Liu, G. M. Effect of thickness on the pH responsiveness of strong polyelectrolyte brushes. Chinese J. Polym. Sci. 2025, 43, 2185–2190
Guang-Tao Mei, Yue Huang, Jian Zhang, et al. Effect of Thickness on the pH Responsiveness of Strong Polyelectrolyte Brushes[J]. Chinese Journal of Polymer Science, 2025, 43(12): 2185-2190.
Mei, G. T.; Huang, Y.; Zhang, J.; Liu, G. M. Effect of thickness on the pH responsiveness of strong polyelectrolyte brushes. Chinese J. Polym. Sci. 2025, 43, 2185–2190 DOI: 10.1007/s10118-025-3464-x.
Guang-Tao Mei, Yue Huang, Jian Zhang, et al. Effect of Thickness on the pH Responsiveness of Strong Polyelectrolyte Brushes[J]. Chinese Journal of Polymer Science, 2025, 43(12): 2185-2190. DOI: 10.1007/s10118-025-3464-x.
For strong polyelectrolyte brushes
the pH-responsive hydration and stiffness are dependent on brush thickness
and the pH-responsive adhesion and wettability are independent of brush thickness.
Strong polyelectrolyte brushes (SPBs) play an important role in enabling material surface functionalization due to their unique stimuli-responsive properties. Although the unexpected pH responsiveness of SPBs has been revealed in the past ten years
it is still unclear if the pH-responsive properties of SPBs are affected by the brush thickness. In this study
we employed the positively charged poly[2-(methacryloyloxy)ethyl] trimethylammonium chloride (PMETAC) and negatively charged sodium poly(styrenesulfonate) (NaPSS) brushes as model systems to explore the effect of thickness on the pH-responsive properties of SPBs. The results demonstrate that the pH-responsive properties of SPBs manifest different dependences on the brush thickness. Specifically
for both PMETAC and NaPSS brushes
the pH-responsive hydration and stiffness are influenced by the thickness
and the pH-responsive wettability and adhesion are almost unaffected by the thickness. This work not only provides a clear understanding of the relationship between the brush thickness and the pH responsiveness of SPBs
but also offers a new method to control the pH-responsive properties of SPBs.
[Ren, H.; Qiu, X. P.; Shi, Y.; Yang, P.; Winnik, F. M. pH-dependent morphology and photoresponse of azopyridine-terminated poly(N-isopropylacrylamide) nanoparticles in Water. Macromolecules 2019, 52 , 2939-2948..
Ren, H.; Qiu, X. P.; Shi, Y.; Yang, P.; Winnik, F. M. The two phase transitions of hydrophobically end-capped poly(N-isopropylacrylamide)s in water. Macromolecules 2020 , 53 , 5105−5115..
Ren, H.; Qiu, X. P.; Shi, Y.; Yang, P.; Winnik, F. M. Light, temperature, and pH control of aqueous azopyridine-terminated poly(N-isopropylacrylamide) solutions. Polym. Chem. 2019 , 10 , 5080−5086..
Ren, H.; Yang, P.; Winnik, F. M. Azopyridine: a smart photo- and chemo-responsive substituent for polymers and supramolecular assemblies. Polym. Chem. 2020 , 11 , 5955−5961..
Shi, Y.; Peng, H.; Yang, J. F.; Zhao, J. Counterion binding dynamics of a polyelectrolyte. Macromolecules 2021 , 54 , 4926−4933..
Muthukumar, M. A perspective on polyelectrolyte solutions. Macromolecules 2017 , 50 , 9528−9560..
Shen, Y.; Le, X.; Wu, Y.; Chen, T. Stimulus-responsive polymer materials toward multi-mode and multi-level information anti-counterfeiting: recent advances and future challenges. Chem. Soc. Rev. 2024 , 53 , 606−623..
Ren, H.; Chen, H.; Kang, Y.; Liu, W.; Liu, Y. C.; Tao, F.; Miao, S. T.; Zhang, Y. Y.; Liu, Q.; Dong, M. D.; Liu, Y. G.; Liu, B.; Yang, P. Non-fibril amyloid aggregation at the air/water interface: self-adaptive pathway resulting in a 2D janus nanofilm. Chem. Sci. 2024 , 15 , 8946−8958..
Bai, J. W.; Liu, W.; Wen, B.; Lei, Z. L.; Li, C.; Ren, H.; Yang, P. Synergistic functional group interactions for stable interfacial adhesion: insights from amyloid-inspired polymers. Chinese J. Polym. Sci. 2025 , 43 , 1096−1104..
Smook, L. A.; Dahlin, A.; Schroën, K.; de Beer, S. Responsive polyelectrolyte brushes in applications: functions, stimuli, and design considerations. Adv. Mater. 2025 , 37 , e09580..
Wu, J.; Hua, Z.; Liu, G. Supramolecular adhesives inspired from adhesive proteins and nucleic acids: molecular design, properties, and applications. Soft Matter 2025 , 21 , 324−341..
Dong, Z.; Wu, J.; Shen, X. Y.; Hua, Z.; Liu, G. M. Bioinspired nucleobase-contain ing polyelectrolytes as robust and tunable adhesives by balancing the adhesive and cohesive properties. Chem. Sci. 2023 , 14 , 3938−3948..
Xiong, T. Y.; Li, C. W.; He, X. L.; Xie, B. Y.; Zong, J. W.; Jiang, Y. A.; Ma, W. J.; Wu, F.; Fei, J. J.; Yu, P.; Mao, L. Q. Neuromorphic functions with a polyelectrolyte-confined fluidic memristor. Science 2023 , 379 , 156−161..
Yu, J.; Jackson, N. E.; Xu, X.; Morgenstern, Y.; Kaufman, Y.; Ruths, M.; de Pablo, J. J.; Tirrell, M. Multivalent counterions diminish the lubricity of polyelectrolyte brushes. Science 2018 , 360 , 1434−1438..
He, Z. Y.; Xie, W. J.; Liu, Z. Q.; Liu, G. M.; Wang, Z. W.; Gao, Y. Q.; Wang, J. J. Tuning ice nucleation with counterions on polyelectrolyte brush surfaces. Sci. Adv. 2016 , 2 , e1600345..
Dai,L. H.; Xu, F.; Huang, K.; Xia, Y. S.; Wang, Y. X.; Qu, K.; Xin, L.; Zhang, D. Z.; Xiong, Z. D.; Wu, Y. L.; Guo, X. H.; Jin, W. Q.; Xu, Z. Ultrafast water transport in two-dimensional channels enabled by spherical polyelectrolyte brushes with controllable flexibility. Angew. Chem. Int. Ed. 2021 , 60 , 19933−19941..
He, X. L.; Zhang, K. L.; Li, T.; Jiang, Y. N.; Yu, P.; Mao, L. Q. Micrometer-scale ion current rectification at polyelectrolyte brush-modified micropipets. J. Am. Chem. Soc. 2017 , 139 , 1396−1399..
Wang, J.; Hu, F.; Sant, S.; Chu, K.; Riemer, L.; Damjanovic, D.; Kilbey II, S. M.; Klok, H. A. Pyroelectric polyelectrolyte brushes. Adv. Mater. 2024 , 36 , 2307038..
Chernyy, S.; Järn, M.; Shimizu, K.; Swerin, A.; Pedersen, S. U.; Daasbjerg, K.; Makkonen, L.; Claesson, P.; Iruthayaraj, J. Superhydrophilic polyelectrolyte brush layers with imparted anti-icing properties: effect of counter ions. ACS Appl. Mater. Interfaces 2014 , 6 , 6487−6496..
Huang, Y.; Mei, G. T.; Hua, Z.; Liu, G. M. Counterion-mediated hydrogen bonding making strong polyelectrolytes pH-responsive: current understanding and perspectives. Chinese J. Polym. Sci. 2024 , 42 , 1270−1277..
Zhang, J.; Kou, R.; Liu, G. M. Effect of salt concentration on the pH responses of strong and weak polyelectrolyte brushes. Langmuir 2017 , 33 , 6838−6845..
Topham, P. D.; Glidle, A.; Toolan, D. T. W.; Weir, M. P.; Skoda, M. W. A.; Barker, R.; Howse, J. R. The relationship between charge density and polyelectrolyte brush profile using simultaneous neutron reflectivity and in situ attenuated total internal reflection FTIR. Langmuir 2013 , 29 , 6068−6076..
Geoghegan, M. Weak polyelectrolyte brushes. Soft Matter 2022 , 18 , 2500−2511..
Zhang, J.; Hua, Z.; Liu, G. M. Effect of counterion-mediated hydrogen bonding on polyelectrolytes at the solid/water interface: current understanding and perspectives. Langmuir 2023 , 39 , 2881−2889..
Wu, B.; Wang, X. W.; Yang, J.; Hua, Z.; Tian, K. Z.; Kou, R.; Zhang, J.; Ye, S. J.; Luo, Y.; Craig, V. S. J.; Zhang, G. Z.; Liu, G. M. Reorganization of hydrogen bond network makes strong polyelectrolyte brushes pH-responsive. Sci. Adv. 2016 , 2 , e1600579..
Huang, Y.; Zheng, X. X.; Ye, S. J.; Hua, Z.; Liu, G. M. Counterion-mediated hydrogen bonding making poly(styrenesulfonate)-based strong polyelectrolytes pH-responsive. J. Am. Chem. Soc. 2023 , 145 , 20745−20748..
Schüwer, N.; Klok, H.-A. Tuning the pH sensitivity of poly(methacrylic acid) brushes. Langmuir 2011 , 27 , 4789−4796..
Yadav, V.; Jannes-Lizcano, Y. A.; Dewangan, N. K.; Park, N.; Li, T. H.; Robertson, M. L.; Conrad, J. C. Tuning bacterial attachment and detachment via the thickness and dispersity of a pH-responsive polymer brush. ACS Appl. Mater. Interfaces 2017 , 9 , 44900−44910..
Zhang, H. N.; Rühe, J. Polyelectrolyte multilayers on weak polyelectrolyte brushes. Macromol. Rapid Commun. 2003 , 24 , 576−579..
Zhang, H. N.; Rühe, J. Interaction of strong polyelectrolytes with surface-attached polyelectrolyte brushes-polymer brushes as substrates for the layer-by-layer deposition of polyelectrolytes. Macromolecules 2003 , 36 , 6593−6598..
Zhang, H. N.; Rühe, J. Weak polyelectrolyte brushes as substrates for the formation of surface-attached polyelectrolyte-polyelectrolyte complexes and polyelectrolyte multilayers. Macromolecules 2005 , 38 , 10743−10749..
Xu, G. F.; Yang, J. F.; Zhao, J. Molecular weight dependence of chain conformation of strong polyelectrolytes. J. Chem. Phys. 2018 , 149 , 163329..
Jia, P.; Yang, Q.; Gong, Y.; Zhao, J. Dynamic exchange of counterions of polystyrene sulfonate. J. Chem. Phys. 2012 , 136 , 084904..
Muthukumar, M. Theory of counter-ion condensation on flexible polyelectrolytes: adsorption mechanism. J. Chem. Phys. 2004 , 120 , 9343−9350..
Manning, G. S. Limiting laws and counterion condensation in polyelectrolyte solutions.I. colligative properties. J. Chem. Phys. 1969 , 51 , 924−933..
0
Views
8
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621