

FOLLOWUS
a.Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
b.College of Chemistry and Materials Science, Gannan Normal University, Ganzhou 341000, China
longbin-li@gnnu.edu.cn (L.B.L.)
ywchen@ncu.edu.cn (Y.W.C.)
Received:06 August 2025,
Accepted:18 September 2025,
Published Online:19 November 2025,
Published:15 December 2025
Scan QR Code
Xu, J. C.; Xiao, S. M.; Li, H. C.; Huang, Z. Q.; Li, L. B.; Chen, Y. W. Synergistic intramolecular doping engineering and presodiation towards ultra-stable hard carbon anodes for sodium-ion batteries. Chinese J. Polym. Sci. 2025, 43, 2231–2240
Jian-Cong Xu, Shang-Ming Xiao, Hui-Cui Li, et al. Synergistic Intramolecular Doping Engineering and Presodiation towards Ultra-stable Hard Carbon Anodes for Sodium-ion Batteries[J]. Chinese Journal of Polymer Science, 2025, 43(12): 2231-2240.
Xu, J. C.; Xiao, S. M.; Li, H. C.; Huang, Z. Q.; Li, L. B.; Chen, Y. W. Synergistic intramolecular doping engineering and presodiation towards ultra-stable hard carbon anodes for sodium-ion batteries. Chinese J. Polym. Sci. 2025, 43, 2231–2240 DOI: 10.1007/s10118-025-3461-0.
Jian-Cong Xu, Shang-Ming Xiao, Hui-Cui Li, et al. Synergistic Intramolecular Doping Engineering and Presodiation towards Ultra-stable Hard Carbon Anodes for Sodium-ion Batteries[J]. Chinese Journal of Polymer Science, 2025, 43(12): 2231-2240. DOI: 10.1007/s10118-025-3461-0.
An ultra-stable polymer-derived hard carbon anodes have been synergistically prepared via the intramolecular doping engineering and chemical presodiation. The presodiated hard carbons demonstrate the 93.6% capacity retention over 3000 cycles at 1.0 C owing to the thin
smooth and dense SEI film with rich NaF.
The low-voltage plateau capacity
which is highly related to the internal closed pores in hard carbon (HC)
is the main contributor to the total capacity in sodi
um-ion batteries. However
the formation mechanism of closed pores and modification strategies at the molecular level in HC polymer precursors remain poorly understood. Furthermore
the practical applications of HCs are significantly impeded by their low initial coulombic efficiency (ICE). In this study
the intramolecular heteroatom doping (IHP) effect was proposed to facilitate the formation of closed pores in polymer-derived HC for the first time by grafting sulfonyl
ether
and carbonyl groups between benzene rings. As a result
the optimized HC sample showed an increased closed pore volume and low Na
+
adsorption energy
which delivered a reversible capacity of 307.9 mAh·g
−1
and superior rate capability. Through further optimized presodiation
the formed presodiated HC featuring a thin
smooth
and dense solid electrolyte interface film exhibited a remarkably enhanced ICE of 94.4% and enhanced cycling stability (93.6% over 3000 cycles). This study provides an in-depth understanding of the formation mechanisms of closed pores
via
IHP engineering and develops a new synergistic strategy involving presodiation to prepare highly stable HC anodes.
Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015 , 7 , 19−29..
Peng, M.; Wang, L.; Li, L.; Peng, Z.; Tang, X.; Hu, T.; Yuan, K.; Chen, Y. Molecular crowding agents engineered to make bioinspired electrolytes for high-voltage aqueous supercapacitors. eScience 2021 , 1 , 83−90..
[Ding, Y.; Li, L.; Xu, S.; Zhou, B.; Wang, J.; Chen, Y. In situ preparation of composite gel electrolytes with high room-temperature ionic conductivity and homogeneous Na + flux for sodium metal batteries. Sci. China Chem . 2025 , 68 , 1522-1532..
Cheng, F.; Lai, S.; Zhang, Y.; Xue, L.; Xia, X.; Zhu, P.; Lu, X.; Liao, X.; Chen, Y. Random terpolymer based on simple siloxane-functionalized thiophene unit enabling high-performance non-fullerene organic solar cells. Chinese J. Polym. Sci. 2024 , 42 , 311−321..
Xu, J.; Pang, S.; Wang, X.; Wang, P.; Ji, Y. Ultrastable aqueous phenazine flow batteries with high capacity operated at elevated temperatures. Joule 2021 , 5 , 2437−2449..
Fang, Y.; Xiao, L.; Chen, Z.; Ai, X.; Cao, Y.; Yang, H. Recent advances in sodium-ion battery materials. Electrochem. Energy Rev. 2018 , 1 , 294−323..
Sada, K.; Darga, J.; Manthiram, A. Challenges and prospects of sodium-ion and potassium-ion batteries for mass production. Adv. Energy Mater. 2023 , 13 , 2302321..
He, H.; Sun, D.; Tang, Y.; Wang, H.; Shao, M. Understanding and improving the initial coulombic efficiency of high-capacity anode materials for practical sodium ion batteries. Energy Storage Mater. 2019 , 23 , 233−251..
He, Z.; Huang, Y.; Liu, H.; Geng, Z.; Li, Y.;Li, S.; Deng, W.; Zou, G.; Hou, H.; Ji, X. Anode materials for fast charging sodium-ion batteries. Nano Energy 2024 , 129 , 109996..
Qiao, S.; Zhou, Q.; Ma, M.; Liu, H. K.; Dou, S. X.; Chong, S. Advanced anode materials for rechargeable sodium-ion batteries. ACS Nano 2023 , 17 , 11220−11252..
Zhang, W.; Zhang, F.; Ming, F.; Alshareef, H. N. Sodium-ion battery anodes: Status and future trends. EnergyChem 2019 , 1 , 100012..
Chu, Y.; Zhang, J.; Zhang, Y.; Li, Q.; Jia, Y.; Dong, X.; Xiao, J.; Tao, Y.; Yang, Q.-H. Reconfiguring hard carbons with emerging sodium-ion batteries: a perspective. Adv. Mater. 2023 , 35 , 2212186..
Matei Ghimbeu, C.; Beda, A.; Réty, B.; El Marouazi, H.; Vizintin, A.; Tratnik, B.; Simonin, L.; Michel, J.; Abou-Rjeily, J.; Dominko, R. Review: Insights on hard carbon materials for sodium-ion batteries (SIBs): synthesis-properties-performance relationships. Adv. Energy Mater. 2024 , 14 , 2303833..
Xiao, L.; Lu, H.; Fang, Y.; Sushko, M. L.; Cao, Y.; Ai, X.; Yang, H.; Liu, J. Low-defect and low-porosity hard carbon with high coulombic efficiency and high capacity for practical sodium ion battery anode. Adv. Energy Mater. 2018 , 8 , 1703238..
You, S.; Zhang, Q.; Liu, J.; Deng, Q.; Sun, Z.; Cao, D.; Liu, T.; Amine, K.; Yang, C. Hard carbon with an opened pore structure for enhanced sodium storage performance. Energy Environ. Sci. 2024 , 17 , 8189−8197..
Sun, N.; Qiu, J.; Xu, B. Understanding of sodium storage mechanism in hard carbons: ongoing development under debate. Adv. Energy Mater. 2022 , 12 , 2200715..
Yin, X.; Zhao, Y.; Wang, X.; Feng, X.; Lu, Z.; Li, Y.; Long, H.; Wang, J.; Ning, J.; Zhang, J. Modulating the graphitic domains of hard carbons derived from mixed pitch and resin to achieve high rate and stable sodium storage. Small 2022 , 18 , 2105568..
Hu, Y.; Li, B.; Jiao, X.; Zhang, C.; Dai, X.; Song, J. Stable cycling of phosphorus anode for sodium-ion batteries through chemical bonding with sulfurized polyacrylonitrile. Adv. Funct. Mater. 2018 , 28 , 1801010..
Dey, S. C.; Worfolk, B.; Lower, L.; Sagues, W. J.; Nimlos, M. R.; Kelley, S. S.; Park, S. Phenolic resin derived hard carbon anode for sodium-ion batteries: a review. ACS Energy Lett. 2024 , 9 , 2590−2614..
Lin, J.; Zhou, Q.; Liao, Z.; Chen, Y.; Liu, Y.; Liu, Q.; Xiong, X. Steric hindrance engineering to modulate the closed pores formation of polymer-derived hard carbon for high-performance sodium-ion batteries. Angew. Chem. Int. Ed. 2024 , 63 , e202409 906..
Zheng, J.; Guan, C.; Li, H.; Wang, D.; Lai, Y.; Li, S.; Li, J.; Zhang, Z. Unveiling the microscopic origin of irreversible capacity loss of hard carbon for sodium-ion batteries. Adv. Energy Mater. 2024 , 14 , 2303584..
Tang, Z.; Wang, H.; Wu, P. F.; Zhou, S. Y.; Huang, Y. C.; Zhang, R.; Sun, D.; Tang, Y. G.; Wang, H. Y. Electrode-electrolyte interfacial chemistry modulation for ultra-high rate sodium-ion batteries. Angew. Chem. Int. Ed. 2022 , 61 , e202200475..
Liu, M.; Wu, F.; Gong, Y.; Li, Y.; Li, Y.; Feng, X.; Li, Q.; Wu, C.; Bai, Y. Interfacial-catalysis-enabled layered and inorganic-rich SEI on hard carbon anodes in ester electrolytes for sodium-ion batteries. Adv. Mater. 2023 , 35 , 2300002..
Ma, M.; Cai, H.; Xu, C.; Huang, R.; Wang, S.; Pan, H.; Hu, Y. S. Engineering solid electrolyte interface at nano-scale for high-performance hard carbon in sodium-ion batteries. Adv. Funct. Mater. 2021 , 31 , 2100278..
Kamiyama, A.; Kubota, K.; Igarashi, D.; Youn, Y.; Tateyama, Y.; Ando, H.; Gotoh, K.; Komaba, S. MgO-tem plate synthesis of extremely high capacity hard carbon for Na-ion battery. Angew. Chem. Int. Ed. 2021 , 60 , 5114−5120..
Qiu, C.; Li, A.; Qiu, D.; Wu, Y.; Jiang, Z.; Zhang, J.; Xiao, J.; Yuan, R.; Jiang, Z.; Liu, X.; Chen, X.; Song, H. One-step construction of closed pores enabling high plateau capacity hard carbon anodes for sodium-ion batteries: closed-pore formation and energy storage mechanisms. ACS Nano 2024 , 18 , 11941−11954..
Hu, Q.; Xu, L.; Liu, G.; Hu, J.; Ji, X.; Wu, Y. Understanding the sodium storage behavior of closed pores/carbonyl groups in hard carbon. ACS Nano 2024 , 18 , 21491−21503..
Hong, Z.; Zhen, Y.; Ruan, Y.; Kang, M.; Zhou, K.; Zhang, J. M.; Huang, Z.; Wei, M. Rational design and general synthesis of S-doped hard carbon with tunable doping sites toward excellent Na-ion storage performance. Adv. Mater. 2018 , 30 , 1802035..
Peng, Z.; Guo, J.; He, Q.; Li, S.; Tan, L.; Chen, Y. Hierarchically nitrogen-doped mesoporous carbon nanospheres with dual ion adsorption capability for superior rate and ultra-stable zinc ion hybrid supercapacitors. Sci. China Mater. 2022 , 65 , 2401−2411..
Fang, H.; Gao, S.; Ren, M.; Huang, Y.; Cheng, F.; Chen, J.; Li, F. Dual-function presodiation with sodium diphenyl ketone towards ultra-stable hard carbon anodes for sodium-ion batteries. Angew. Chem. Int. Ed. 2022 , 62 , e202214717..
Wang, Z.; Chen, S.; Qiu, J.; Li, J.; Zhao, W.; Ji, Y.; Yao, X.; Chen, Z.; Li, K.; Dong, M.; Pan, F.; Yang, L. Full-cell presodiation strategy to enable high-performance Na-ion batteries. Adv. Energy Mater. 2023 , 13 , 2302514..
Liu, X.; Tan, Y.; Liu, T.; Wang, W.; Li, C.; Lu, J.; Sun, Y. A simple electrode-level chemical presodiation route by solution spraying to improve the energy density of sodium-ion batteries. Adv. Funct. Mater. 2019 , 29 , 1903795.
Cao, Y.; Zhang, T.; Zhong, X.; Zhai, T.; Li, H. A safe, convenient liquid phase pre-sodiation method for titanium-based SIB materials. Chem. Commun. 2019 , 55 , 14761−14764..
Wu, B.; Xiao, J.; Li, L.; Hu, T.; Qiu, M.; Lützenkirchen-Hecht, D.; Yuan, K.; Chen, Y. Arranging electronic localization of ptcu nanoalloys to stimulate improved oxygen electroreduction for high-performance fu el cells. CCS Chem. 2023 , 5 , 2545−2556..
Tang, Z.; Zhang, R.; Wang, H.; Zhou, S.; Pan, Z.; Huang, Y.; Sun, D.; Tang, Y.; Ji, X.; Amine, K.; Shao, M. Revealing the closed pore formation of waste wood-derived hard carbon for advanced sodium-ion battery. Nat. Commun. 2023 , 14 , 6024..
Wang, J.; Xi, L.; Peng, C.; Song, X.; Wan, X.; Sun, L.; Liu, M.; Liu, J. Recent Progress in Hard Carbon Anodes for Sodium-Ion Batteries. Adv. Eng. Mater. 2024 , 26 , 2302063..
Zheng, H.; Zeng, J.; Wan, X.; Song, X.; Peng, C.; Wang, J.; Sun, L.; Wang, H.; Zhu, M.; Liu, J. ICE optimization strategies of hardcarbon anode for sodium-ion batteries: from the perspective of material synthesis. Mater. Futures 2024 , 3 , 032102..
Xiao, K.; Jiang, X.; Zeng, S.; Chen, J.; Hu, T.; Yuan, K.; Chen, Y. Porous structure-electrochemical performance relationship of carbonaceous electrode-based zinc ion capacitors. Adv. Funct. Mater. 2024 , 34 , 2405830..
Huang, Y.; Hu, X.; Li, Y.; Zhong, X.; He, Z.; Geng, Z.; Gan, S .; Deng, W.; Zou, G.; Hou, H.; Ji, X. Demystifying the influence of precursor structure on S-doped hard carbon anode: Taking glucose, carbon dots, and carbon fibers as examples. Adv. Funct. Mater. 2024 , 34 , 2403648..
Morikawa, Y.; Nishimura, S. I.; Hashimoto, R. i.; Ohnuma, M.; Yamada, A. Mechanism of sodium storage in hard carbon: An X-ray scattering analysis. Adv. Energy Mater. 2020 , 10 , 1903176..
Kitsu Iglesias, L.; Antonio, E. N.; Martinez, T. D.; Zhang, L.; Zhuo, Z.; Weigand, S. J.; Guo, J.; Toney, M. F. Revealing the sodium storage mechanisms in hard carbon pores. Adv. Energy Mater. 2023 , 13 , 2302171..
Li, Y.; Lu, Y.; Meng, Q.; Jensen, A. C. S.; Zhang, Q.; Zhang, Q.; Tong, Y.; Qi, Y.; Gu, L.; Titirici, M.-M.; Hu, Y.-S. Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance. Adv. Energy Mater. 2019 , 9 , 1902852..
Zheng, G.; Lin, Q.; Ma, J.; Zhang, J.; He, Y. B.; Tang, X.; Kang, F.; Lv, W.; Yang, Q. H. Ultrafast presodiation of graphene anodes for high-efficiency and high-rate sodium-ion storage. InfoMat 2021 , 3 , 1445−1454..
Liu, X.; Zhao, J.; Dong, H.; Zhang, L.; Zhang, H.; Gao, Y.; Zhou, X.; Zhang, L.; Li, L.; Liu, Y.; Chou, S.; Lai, W.; Zhang, C.; Chou, S. Sodium difluoro(oxalato)borate additive-induced robust SEI and CEI layers enable dendrite-free and long-cycling sodium-ion batteries. Adv. Funct. Mater. 2024 , 34 , 2402310..
Cai, P.; Wang, K.; He, X.; Li, Q.; Zhang, Z.; Li, M.; Li, H.; Zhou, M.; Wang, W.; Jiang, K. Electric-field harmony in V 2 C/V 2 O 5 heterointerfaces toward high-performance aqueous Zn-ion batteries. Energy Storage Mater. 2023 , 60 , 102835..
0
Views
11
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621