

FOLLOWUS
a.Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R & D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, China
b.Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
xiongjieli@mail.scuec.edu.cn (X.J.L.)
daohong.zhang@scuec.edu.cn (D.H.Z.)
Received:25 July 2025,
Accepted:18 September 2025,
Published Online:19 November 2025,
Published:15 December 2025
Scan QR Code
Wang, Y.; Li, D.; Wu, Y.; Zhu, T. R.; Chen, S. F.; Zhang, J. H.; Li, X. J.; Zhang, D. H. Directly high-value reusability of selective degradable epoxy resins for wind turbine blades. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3459-7
Yu Wang, Dan Li, Yu Wu, et al. Directly High-value Reusability of Selective Degradable Epoxy Resins for Wind Turbine Blades[J/OL]. Chinese Journal of Polymer Science, 2025, 432264-2273.
Wang, Y.; Li, D.; Wu, Y.; Zhu, T. R.; Chen, S. F.; Zhang, J. H.; Li, X. J.; Zhang, D. H. Directly high-value reusability of selective degradable epoxy resins for wind turbine blades. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3459-7 DOI:
Yu Wang, Dan Li, Yu Wu, et al. Directly High-value Reusability of Selective Degradable Epoxy Resins for Wind Turbine Blades[J/OL]. Chinese Journal of Polymer Science, 2025, 432264-2273. DOI: 10.1007/s10118-025-3459-7.
Introducing degradable Schiff base bonds into the epoxy network enables selective degradation and direct recycling. The resulting materials combine enhanced mechanical strength with excellent reusability
providing a sustainable route for high-value recovery of wind turbine blades and extended service life under harsh conditions.
The poor degradability and limited recyclability of epoxy resins are key challenges hindering the efficient recycling of ex-service wind turbine blades (EWTBs). Herein
we proposed a selective degradation strategy for direct recycling and high-value recovery of epoxy resins by introducing degradable Schiff base groups into the molecular structure and utilizing the resulting oligomers as curing agents. To realize this strategy
a series of Schiff base compounds were synthesized using bio-based vanillin and diamines and subsequently functionalized with epichlorohydrin to yield bio-based epoxy resins. The cured epoxy resins demonstrated remarkable improvements in the mechanical properties of diglycidyl ether of bisphenol-A (DGEBA)
with an increases of 44.49% in the tensile strength of 38.55%
bending strength
and impact strength of 71.20 %. The introduction of dynamic Schiff base bonds enabled the selective degradation of the vanillin-2
2-bis[4-(4-aminophenoxy)phenyl]propane-based epoxy resin (VBEP)/DGEBA copolymer
producing 84.20% oligomers that can be directly recycled and reused. Replacing 30 wt% of the curing agent with the oligomer increased the tensile strength of the cured sample to 75.40 MPa
surpassing that of the cured DGEBA. Under simulated acid rain and seawater exposure
the copolymer exhibited a service life of 27 years at 40 °C
significantly exceeding the currently reported service life of 20 years. This study presents a sustainable strategy for the direct recycling and high-value reuse of epoxy resin
offering a promising solution for EWTBs.
Veers, P.; Dykes, K.; Lantz, E.; Barth, S.; Bottasso, C.L.; Carlson, O.; Clifton, A.; Green, J.; Green, P.; Holttinen, H. Grand challenges in the science of wind energy. Science 2019 , 366 , eaau2027..
Ma, X.; Wu, Y.; Liang, N.; Xu, H.; Xu, Z.; Chen, S.; Zhang, D. High-efficiently renewable hyperbranched epoxy resin/carbon fiber composites with both long service life and high performance. Compos. Commun. 2023 , 40 , 101630..
Zhang, B.; Zhang, S.; Yang, Z.; Liu, W.; Wu, B.; Huang, M.; Liu, B. Pyrolysis process and products characteristics of glass fiber reinforced epoxy resin from waste wind turbine blades. Compos. B Eng. 2024 , 287 , 111803..
Guo, F. L.; Hu, J. M.; Guan, T.; Peng, C. Y.; Fu, Y. T.; Qu, D. Y.; Hou, W. D.; Zhang, Y. C.; Li, Y. Q.; Liu, S. T.; Fu, S. Y. Enhancing interlaminar mechanical performance and cryo-thermal cycling resistance of carbon fiber reinforced epoxy composite laminates with discrete short carbon fiber method. Compos. Commun. 2025 , 53 , 102253..
Ahrens, A.; Bonde, A.; Sun, H.; Wittig, N. K.; Hammershøj, H. C. D.; Batista, G. M. F.; Sommerfeldt, A.; Frølich, S.; Birkedal, H.; Skrydstrup, T. Catalytic disconnection of C–O bonds in epoxy resins and composites. Nature 2023 , 617 , 730−737..
Wang, B.; Chen, G.; Dong, Y.; Guo, H.; Widenmeyer, M.; Huang, Z. Wind turbine blade recycling for greener and sustainable wind energy. Nat. Rev. Mater. 2025 , 10 , 330−331..
Yang, J.; Meng, F.; Zhang, L.; McKechnie, J.; Chang, Y.; Ma, B.; Hao, Y.; Li, X.; Pender, K.; Yang, L.; Leeke, G. A.; Cullen, J. M. Solutions for recycling emerging wind turbine blade waste in China are not yet effective. Commun. Earth Environ. 2023 , 4 , 466..
Pryor, S. C.; Barthelmie, R. J.; Bukovsky, M. S.; Leung, L. R.; Sakaguchi, K. Climate change impacts on wind power generation. Nat. Rev. Earth Environ. 2020 , 1 , 627−643..
Wu, W.; Feng, H.; Xie, L.; Zhang, A.; Liu, F.; Liu, Z.; Zheng, N.; Xie, T. Reprocessable and ultratough epoxy thermosetting plastic. Nat. Sustain. 2024 , 7 , 804−811..
Fan, Q.; Li, J.; Cao, Q.; Gu, C.; Liu, Q.; Jian, X.; Weng, Z. Bio-based liquid crystal epoxy resins: toughening and strengthening of conventional epoxy resins with strategically extended spacer layers. Compos. Commun. 2024 , 51 , 102068..
Qi, Y.; Fan, Q.; Li, J.; Cao, Q.; Pan, X.; P an, Y.; Jian, X.; Weng, Z. Toughened and reinforced the petroleum-based epoxy resin via thermotropic liquid crystal bio-based counterpart. Compos. Commun. 2023 , 44 , 101771..
Xia, H.; Li, J.; Wang, K.; Hou, X.; Yang, T.; Hu, J.; Shi, Z. Superior wear resistance of epoxy composite with highly dispersed graphene spheres. Adv. Compos. Hybrid Mater. 2022 , 5 , 173−183..
Dağlar, Ö.; Türel, T.; Pantazidis, C.; Tomović, Ž. Chemical and solvent-based recycling of DGEBA-based epoxy thermoset and carbon-fiber reinforced epoxy composite utilizing imine-containing secondary amine hardener. Macromol. Rapid Commun. 2025 , 46 , 2400678..
Jaques, N. G.; Nicácio, P. H. M.; Wellen, R. M. R. Non-isothermal curing kinetics of isosorbide based on epoxy with anhydrides. J. Polym. Environ. 2024 , 32 , 2365−2379..
Li, Y.; Wu, Y.; Li, K.; Lin, H.; Wang, M.; Zheng, L.; Wu, C.; Zhang, X. Recycling of epoxy resins with degradable structures or dynamic cross-linking networks: a review. Ind. Eng. Chem. Res. 2024 , 63 , 5005−5027..
Oliveux, G.; Dandy, L. O.; Leeke, G. A. Current status of recycling of fibre reinforced polymers: review of technologies, reuse and resulting properties. Prog. Mater. Sci. 2015 , 72 , 61−99..
Tao, Y.; Hadigheh, S.A.; Wei, Y. Recycling of glass fibre reinforced polymer (GFRP) composite wastes in concrete: a critical review and cost benefit analysis. Structures 2023 , 53 , 1540−1556..
Wang, F.; Wang, Q.; Yang, S. Mechanochemical recycling of acid anhydride-cured epoxy resin for functional applications. ACS Sustain. Chem. Eng. 2025 , 13 , 647−657..
Beauson, J.; Laurent, A.; Rudolph, D.P.; Pagh Jensen, J. The complex end-of-life of wind turbine blades: a review of the European context. Renew. Sustain. Energy Rev. 2022 , 155 , 111847..
Khalid, M.Y.; Arif, Z.U.; Hossain, M.; Umer, R. Recycling of wind turbine blades through modern recycling technologies: a road to zero waste. Renew. Energy Focus 2023 , 44 , 373−389..
Liu, P.; Meng, F.; Barlow, C.Y. Wind turbine blade end-of-life options: an eco-audit comparison. J. Clean. Prod. 2019 , 212 , 1268−1281..
Lahive, W. C.; Dempsey, H. S.; Reibe, E. S.; Pal, A.; Stevenson, R. K.; Michener, E. W.; Alt, M. H.; Ramirez, J. K.; Rognerud, G. E.; Lincoln, L. C.; Clarke, W. R.; DesVeaux, S. J.; Uekert, T.; Rorrer, A. N.; Knauer, M. K.; Beckham, T. G. Acetolysis for epoxy-amine carbon fibrereinforced polymer recycling. Nature 2025 , 605 , 612..
Pei, D.; Wang, P.; Hao, J.; Zi, Y.; Zhang, O.; Yang, J.; Tang, J.; Hu, J. A strong and tough thermosetting epoxy resin for recyclable high-performance composites. Angew. Chem. Int. Ed. 2025 , 137 , e202505526..
Liu, L.; Liu, X.; Li, X.; Xu, S.; Wang, Y. An integrative chemical recycling approach for catalytic oxidation of epoxy resin and in situ separation of degraded products. Angew. Chem. Int. Ed. 2024 , 63 , e202405912..
Ma, X.; Xu, H.; Xu, Z.; Jiang, Y.; Chen, S.; Cheng, J.; Zhang, J.; Miao, M.; Zhang, D. Closed-loop recycling of both resin and fiber from high-performance thermoset epoxy/carbon fiber composites. ACS Macro Lett. 2021 , 10 , 1113−1118..
Memon, H.; Liu, H.; Rashid, M. A.; Chen, L.; Jiang, Q.; Zhang, L.; Wei, Y.; Liu, W.; Qiu, Y. Vanillin-based epoxy vitrimer with high performance and closed-loop recyclability. Macromolecules 2020 , 53 , 621−630..
Hao, Y.; Zhong, L.; Li, T.; Zhang, J.; Zhang, D. High-performance recyclable and malleable epoxy resin with vanillin-based hyperbranched epoxy resin containing dual dynamic bonds. ACS Sustain. Chem. Eng. 2023 , 11 , 11077−11087..
Qin, J.; Sun, Z.; Wang, M.; Luo, J.; Zhang, J.; Liu, Q.; Liu, W.; Zhang, H.; Yu, J. Vanillin-derived degradable and reprocessable liquid-crystalline epoxy resins with high intrinsic thermal conductivity. Angew. Chem. Int. Ed. 2025 , 137 , e202504637..
Li, J.; Zhang, B.; Yuan, X.; Zhang, X.; Li, Y.; Cao, W.; Li, X. Benzene ring structural design strategy toward well-balanced thermal and electrical properties in epoxy dielectric polymers. Compos. B Eng. 2025 , 297 , 112308..
Chen, P.; Ding, Y.; Wang, Y.; Zhao, H.; Li, P.; Liu, Y.; Gao, C. Functional bio-based vitrimer with excellent healing and recyclability based on conjugated deflection self-toughening. Chem. Eng. J. 2023 , 474 , 145680..
Liu, X.; Xiao, Y.; Luo, X.; Liu, B.; Guo, D. M.; Chen, L.; Wang, Y. Flame-Retardant multifunctional epoxy resin with high performances. Chem. Eng. J. 2022 , 427 , 132031..
[Wang, S.; Ruan, K.; Guo, Y.; Kong, J.; Gu, J. Thermally conductive naphthalene epoxy resin by tailoring flexible chain length and liquid crystal structure. Angew. Chem. Int. Ed . 2025 , e202501459..
Liu, L.; Wang, F.; Zhu, Y.; Qi, H. Degradable schiff base benzoxazine thermosets with high glass transition temperature and Its high-performance epoxy alloy: synthesis and properties. Polym. Adv. Technol. 2023 , 34 , 405−418..
Li, Z.; Liu, R.; Zhang, Y.; Yang, K.; Zhang, Z.; Zhao, Y.; Yan, H. Designing Schiff-based hyperbranched polysiloxane for simultaneously enhancing epoxy resin with mechanical properties, thermal stability, and recyclability. ACS Appl. Polym. Mater. 2024 , 6 , 3115−3127..
Yang, M.; Zhou, L.; Li, X.; Ren, W.; Sh en, Y. Polyimides physically crosslinked by aromatic molecules exhibit ultrahigh energy density at 200 °C. Adv. Mater. 2023 , 35 , 2302392..
Zhi, M.; Yang, X.; Fan, R.; Yue, S.; Zheng, L.; Liu, Q.; He, Y. A comprehensive review of reactive flame-retardant epoxy resin: fundamentals, recent developments, and perspectives. Polym. Degrad. Stabil. 2022 , 201 , 109976..
Qian, Z.; Xiao, Y.; Zhang, X.; Li, Q.; Wang, L.; Fu, F.; Diao, H.; Liu, X. Bio-based epoxy resins derived from diphenolic acid via amidation showing enhanced performance and unexpected autocatalytic effect on curing. Chem. Eng. J. 2022 , 435 , 135022..
Jia, L.; Chen, B.; Zhao, H.; Lan, X. Mechanical and thermal properties of elastic epoxy thermoset cured by cardanol-based diglycidyl epoxy modified polyetheramine. Iran. Polym. J. 2022 , 31 , 1107−1115..
Lefeuvre, A.; Garnier, S.; Jacquemin, L.; Pillain, B.; Sonnemann, G. Anticipating in-use stocks of carbon fiber reinforced polymers and related waste flows generated by the commercial aeronautical sector until 2050. Resour. Conserv. Recycl. 2017 , 125 , 264−272..
Carvalho-Andrade, G.; Nalon-Castro, L.; Campos da Silva, L. Micromorphological alterations induced by simulated acid rain on the leaf surface of Joannesia princeps Vell. (Euphorbiaceae). Ecol. Indic. 2020 , 116 , 106526..
Xu, X.; Ma, S.; Wu, J.; Yang, J.; Wang, B.; Wang, S.; Qiong, L.; Feng, J.; You, S. High-performance, command-degradable, antibacterial Schiff base epoxy thermosets: Synthesis and properties. J. Mater. Chem. A 2019 , 7 , 15420−15431..
Li, J.; Weng, Z.; Cao, Q.; Qi, Y.; Lu, B.; Zhang, S.; Wang, J.; Jian, X. Synthesis of an aromatic amine derived from biomass and its use as a feedstock for versatile epoxy thermoset. Chem. Eng. J. 2022 , 433 , 134512..
[Liu, X.; Wu, H.; Xu, W.; Jiang, Y.; Zhang, J.; Ye, B.; Zhang, H.; Chen, S.; Miao, M.; Zhang, D. Ultrastrong and high-tough thermoset epoxy resins from hyperbranched topological structure and subnanoscaled free volume. Adv. Mater. 2024 , 36 , 2308434..
Xu, Z.; Liang, Y.; Ma, X.; Chen, S.; Yu, C.; Wang, Y.; Zhang, D.; Miao, M. Recyclable thermoset hyperbr anched polymers containing reversible hexahydro-s-triazine. Nat. Sustain. 2020 , 3 , 29−34..
Xu, P.; Li, J.; Ding, J. Chemical recycling of carbon fibre/epoxy composites in a mixed solution of peroxide hydrogen and N , N -dimethylformamide. Compos. Sci. Technol. 2013 , 82 , 54−59..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621