

FOLLOWUS
The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MOE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Advanced Polymer Materials, College of Chemistry, Sichuan University, Chengdu 610064, China
gangwu@scu.edu.cn
Received:26 July 2025,
Revised:2025-09-09,
Accepted:12 September 2025,
Published Online:19 November 2025,
Published:15 December 2025
Scan QR Code
Zhong, Q. Y.; Ou-Yang, X. P.; Li, F.; Chen, S. C.; Wu, G.; Wang, Y. Z. Synthesis of chemically recyclable poly(glycolic acid)-based triblock copolymers with adjustable performance. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3454-z
Qi-Ying Zhong, Xue-Ping Ou-Yang, Fang Li, et al. Synthesis of Chemically Recyclable Poly(glycolic acid)-based Triblock Copolymers with Adjustable Performance[J/OL]. Chinese Journal of Polymer Science, 2025, 432310-2324.
Zhong, Q. Y.; Ou-Yang, X. P.; Li, F.; Chen, S. C.; Wu, G.; Wang, Y. Z. Synthesis of chemically recyclable poly(glycolic acid)-based triblock copolymers with adjustable performance. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3454-z DOI:
Qi-Ying Zhong, Xue-Ping Ou-Yang, Fang Li, et al. Synthesis of Chemically Recyclable Poly(glycolic acid)-based Triblock Copolymers with Adjustable Performance[J/OL]. Chinese Journal of Polymer Science, 2025, 432310-2324. DOI: 10.1007/s10118-025-3454-z.
In this work
a chemically recyclable and biodegradable poly(glycolic acid)-based triblock copolymer with adjustable performance was synthesized. The PGA-based triblock copolymer can be recycled to the monomer through vacuum-assisted catalytic thermal depolymerization without any solvent
which establishes chemically closed-loop recycling.
Polymers that exhibit both biodegradability and chemical recyclability offer a promising solution to environmental pollution and resource scarcity. Poly(glycolic acid) (PGA) is a promising chemically recyclable polymer
characterized by its seawater degradability and high mechanical strength. In this study
aliphatic polycarbonates were synthesized through melt polycondensation and subsequently copolymerized with glycolide (GL) to produce chemically recyclable PGA based triblock copolymers with well-defined structures. The properties of these copolymers
including their thermal properties
crystallization behavior
and mechanical performance
can be effectively adjusted by modifying the structure and content of the middle block. Furthermore
an in-depth investigation reveals that the pyrolysis process involves ester exchange
radical
and back-biting reactions. In addition
the high-efficiency "Monomer↔Copolymer" chemical recycling loop has been established
achieving a remarkable yield exceeding 88% along with a purity greater than 99%.
Osman, A. I.; Nasr, M.; Aniagor, C. O.; Farghali, M.; Huang, M. M.; Chin, B. L. F.; Sun, Z.; Lock, S. S. M.; López-Maldonado, E. A.; Yiin, C. L.; Chinyelu, C. E.; Farooqi, A. S.; Chen, Z.; Yap, P. S. Synergistic technologies for a circular economy: upcycling waste plastics and biomass. Front. Chem. Sci. Eng. 2024 , 19 , 2..
Issifu, I.; Dahmouni, I.; Sumaila, U. R. Assessing the ecological and economic transformation pathways of plastic production system. J. Environ. Manage. 2025 , 374 , 124104..
Xu, G.; Wang, Q. Chemically recyclable polymer materials: polymerization and depolymerization cycles. Green Chem. 2022 , 24 , 2321−2346..
Shi, C.; Quinn, E. C.; Diment, W. T.; Chen, E. Y. X. Recyclable and (bio)degradable polyesters in a circular plastics economy. Chem. Rev. 2024 , 124 , 4393−4478..
Hong, M.; Chen, E. Y. X. Chemically recyclable polymers: a circular economy approach to sustainability. Green Chem. 2017 , 19 , 3692−3706..
Hillmyer,M. A.; Tolman, W. B. Aliphatic polyester block polymers: renewable, degradable, and sustainable. Acc. Chem. Res. 2014 , 47 , 2390−2396..
Holmberg, A. L.; Reno, K. H.; Wool, R. P.; Epps, I. I. I. T. H. Biobased building blocks for the rational design of renewable block polymers. Soft Matter 2014 , 10 , 7405−7424..
Fang, C.; Wang, X.; Chen, X.; Wang, Z. Mild synthesis of environment-friendly thermoplastic triblock copolymer elastomers through combination of ring-opening and RAFT polymerization. Polym. Chem. 2019 , 10 , 3610−3620..
[Katiyar, V.; Mulchandani, N. Chapter 20: Sustainability in thermoplastic elastomers: Bio-degradable thermoplastic elastomers. In Advances in Thermoplastic Elastomers , Singha, N. K.; Jana, S. C., Eds. Elsevier, 2024 , pp. 511−527..
[Ren, Y.; Zhang, T.; Wang, S.; Han, D.; Huang, S.; Guo, H.; Xiao, M.; Meng, Y. CO 2 derived ABA triblock all-polycarbonate thermoplastic elastomer with ultra-high elastic recovery. J.CO 2 Util . 2024 , 85 , 102853..
Huang, L.; Zhang, J.; Chen, S. C.; Wu, G.; Wang, Y. Z. Recyclable and degradable poly( p -dioxanone)-based copol ymer with enhanced mechanical properties by microphase-separated interface crystallization. Chinese J. Polym. Sci. 2025 , 43 , 933−945..
Luo, Z. X.; Tian, G. Q.; Chen, S. C.; Wu, G.; Wang, Y. Z. Solvent-free one-pot recycling of polylactide to usable polymers and their closed-loop recyclability. Macromolecules 2024 , 57 , 6828−6837..
Lei, J.; Gui, Z. X.; Xiong, W. T.; Wu, G.; Chen, S. C.; Wang, Y. Z. Boosting thermal stability and crystallization of closed-loop-recyclable biodegradable poly( p -dioxanone) by end-group regulation. Sci. China Chem. 2024 , 67 , 642−651..
Li, M. Q.; Luo, Z. X.; Yu, X. Y.; Tian, G. Q.; Wu, G.; Chen, S. C.; Wang, Y. Z. Ring-opening polymerization of a seven-membered lactone toward a biocompatible, degradable, and recyclable semi-aromatic polyester. Macromolecules 2023 , 56 , 2465−2475..
Xiong, W. T.; Wu, G.; Chen, S. C.; Wang, Y. Z. Chemically recyclable copolyesters from bio-renewable monomers: controlled synthesis and composition-dependent applicable properties. Sci. China Chem. 2023 , 66 , 2062−2069..
Yan, Y. T.; Wu, G.; Chen, S. C.; Wang, Y. Z. Controlled synthesis and closed-loop chemical recycling of biodegradable copolymers with composition-dependent properties. Sci. China Chem. 2022 , 65 , 943−953..
Zhao, W.; He, J.; Zhang, Y. Chemical closed-loop recycling of polymers realized by monomer design. Fundam. Res. 2025 , 5 , 951−965..
Dai, J. X.; Li, H.; Liu, X.; Zhang, R. S.; Chen, S. C.; Tian, G. Q.; Wu, G.; Wang, Y. Z. Chemically closed-loop recyclable high-strength aliphatic polycarbonate: controlled ring-opening polymerization, kinetics, and thermodynamics. Macromolecules 2025 , 58 , 7924−7934..
Samantaray, P. K.; Little, A.; Haddleton, D. M.; McNally, T.; Tan, B.; Sun, Z.; Huang, W.; Ji, Y.; Wan, C. Poly(glycolic acid) (PGA): a versatile building block expanding high performance and sustainable bioplastic applications. Green Chem. 2020 , 22 , 4055−4081..
Budak, K.; Sogut, O.; Aydemir Sezer, U. A review on synthesis and biomedical applications of polyglycolic acid. J. polym. Res. 2020 , 27 , 1−19..
Chen, Z.; Zhang, X.; Fu, Y.; Jin, Y.; Weng, Y.; Bian, X.; Chen, X. Degradation behaviors of polylactic acid, polyglycolic acid, and their copolymer films in simulated marine environments. Polymers 2024 , 16 , 1765..
Yamane, K.; Sato, H.; Ichikawa, Y.; Sunagawa, K.; Shigaki, Y. Development of an industrial production technology for high-molecular-weight polyglycolic acid. Polym. J. 2014 , 46 , 769−775..
Fu, Y.; Zhu, L.; Liu, B.; Zhang, X.; Weng, Y. Biodegradation behavior of poly(glycolic acid) (PGA) and poly(butylene adipate- co -terephthalate) (PBAT) blend films in simulation marine environment. Polymer 2024 , 307 , 127295..
Chen, S.; Meng, X.; Xin, Z.; Gong, W.; Li, C.; Wen, W. Preparation of rigidity toughness balance and stable poly(glycolic acid) based on chain extension reaction. J. Appl. Polym. Sci. 2024 , 141 , e54906..
Chen, S.; Meng, X.; Xin, Z.; Gong, W.; Li, C.; Wen, W. Preparation of nonlinear structure poly(glycolic acid) with high toughness, excellent hydrolysis stability, and foaming performance. Ind. Eng. Chem. Res. 2024 , 63 , 9058−9069..
Xu, P.; Tan, S.; Niu, D.; Yang, W.; Ma, P. Highly toughened sustainable green polyglycolic acid/polycaprolactone blends with balanced strength: morphology evolution, interfacial compatibilization, and mechanism. ACS Appl. Polym. Mater. 2022 , 4 , 5772−5780..
Li, J.; Stayshich, R. M.; Meyer, T. Y. Exploiting sequence to control the hydrolysis behavior of biodegradable PLGA copolymers. J. Am. Chem. Soc. 2011 , 133 , 6910−6913..
Hu, F.; Qi, J.; Lu, Y.; He, H.; Wu, W. PLGA-based implants for sustained delivery of peptides/proteins: current status, challenge and perspectives. Chinese Chem. Lett. 2023 , 34 , 108250..
Cai, Q.; Bei, J.; Wang, S. Synthesis and characterization of polycaprolactone (B)–poly(lactide- co -glycolide) (A) ABA block copolymer. Polym. Adv. Technol. 2000 , 11 , 159−166..
Díaz-Celorio, E.; Franco, L.; Rodríguez-Galán, A.; Puiggalí, J. Study on the hydrolytic degradation of glycolide/trimethylene carbonate copolymers having different microstructure and composition. Polym. Degrad. Stabil. 2013 , 98 , 133−143..
Xu, Z. W.; Pan, J. L.; Xu, J.; Cheng, W. M.; Li, Z. L.; Cheng, C. Recyclable, reprocessable, anticorrosive, and hydrolysis-resistant long-chain aliphatic polycarbonates as polyethylene-like materials. ACS Appl. Polym. Mater. 2024 , 6 , 1551−1562..
Wang, Y.; Wen, L.; Liu, J.; Li, C.; Zhang, Z.; Xiao, Y.; Yin, T.; Wu, S.; Jiang, Z.; Zhang, B. Synthesis of biodegradable PGA-PBC-PGA triblock copolymers and closed-loop recycling via a thermal depolymerization strategy. Green Chem. 2023 , 25 , 9998−10009..
Coates, G. W.; Getzler, Y. D. Chemical recycling to monomer for an ideal, circular polymer economy. Nat. Rev. Mater. 2020 , 5 , 501−516..
Vora, N.; Christensen, P. R.; Demarteau, J.; Baral, N. R.; Keasling, J. D.; Helms, B. A.; Scown, C. D. Leveling the cost and carbon footprint of circular polymers that are chemically recycled to monomer. Sci. Adv. 2021 , 7 , eabf0187..
Luo, W.; Xiao, M.; Wang, S.; Ren, S.; Meng, Y. Therma l degradation behavior of copoly(propylene carbonate ε -caprolactone) investigated using TG/FTIR and Py-GC/MS methodologies. Polym. Test. 2017 , 58 , 13−20..
Feng, L.; Feng, S.; Bian, X.; Li, G.; Chen, X. Pyrolysis mechanism of poly(lactic acid) for giving lactide under the catalysis of tin. Polym. Degrad. Stabil. 2018 , 157 , 212−223..
Li, C.; Meng, X.; Gong, W.; Chen, S.; Xin, Z. Kinetic, products distribution, and mechanism analysis for the pyrolysis of polyglycolic acid toward carbon cycle. Fuel 2023 , 333 , 126567..
Zhang, P.; Yang, R.; Wang, Y.; Sun, H.; Xu, G.; Wang, Q. Ring-closing depolymerization of polyglycolide to glycolide through a synergistic transesterification strategy. Polymer 2025 , 317 , 127957..
Cederholm, L.; Olsén, P.; Hakkarainen, M.; Odelius, K. Design for recycling: polyester- and polycarbonate-based A–B–A block copolymers and their recyclability back to monomers. Macromolecules 2023 , 56 , 3641−3649..
Sivalingam, G.; Madras, G. Thermal d egradation of binary physical mixtures and copolymers of poly( ε -caprolactone), poly(d,l-lactide), poly(glycolide). Polym. Degrad. Stabil. 2004 , 84 , 393−398..
Ruan, J.; Liu, Z.; Gao, K.; She, L.; Liu, J.; Guo, Y.; Zhang, F. New insights into typical biodegradable plastics in rapid pyrolysis: kinetics, product evolution and transformation mechanism. Chemosphere 2024 , 369 , 143834..
Cam, D.; Marucci, M. Influence of residual monomers and metals on poly (l-lactide) thermal stability. Polymer 1997 , 38 , 1879−1884..
Karidi, K.; Mantourlias, T.; Seretis, A.; Pladis, P.; Kiparissides, C. Synthesis of high molecular weight linear and branched polylactides: a comprehensive kinetic investigation. Eur. Polym. J. 2015 , 72 , 114−128..
Deng, Z.; Gillies, E. R. Emerging trends in the chemistry of end-to-end depolymerization. JACS Au 2023 , 3 , 2436−2450..
Yang, T.; Lu, R.; Yan, J.; Jin, S.; Xue, Y. Influence of molecular weight on the thermal degradation of poly(lactic aci d): a crystallization perspective. Polymer 2025 , 335 , 128839..
Zhang, Z.; Chen, J.; Wang, X.; Wang, J.; Xu, C.; Xiao, G.; Yu, Y.; Du, J. The influence of molecular weight on the properties of meta-aramid: thermal stability, crystallinity, and mechanical properties. J. Appl. Polym. Sci. 2025 , 142 , e57164..
Cheng, K.; Liu, T.; Niu, F.; Gao, S.; Huang, S.; Xia, Y.; Wang, X.; Yu, J.; He, Y. Comparative study of melt and azeotropic polymerization on the structural evolution and properties of quasi-alternating polyester amides. Macromolecules 2025 , 58 , 8387−8398..
Guan, X.; Ma, X.; Zhou, H.; Chen, F.; Li, Z. Synthesis and thermal decomposition kinetics of poly(methyl methacrylate)- b -poly(styrene) block copolymers. J. Thermoplast. Compos. 2017 , 30 , 691−706..
Srihanam, P.; Thongsomboon, W.; Baimark, Y. Phase morphology, mechanical, and thermal properties of calcium carbonate-reinforced poly(L-lactide)- b -poly(ethylene glycol)- b -poly(L-lactide) bioplastics. Polymers 2023 , 15 , 301..
Al-Mulla, A.; Mathew, J.; Al-Omairi, L.; Bhattacharya, S. Thermal decomposition kinetics of tricomponent polyester/polycarbonate systems. Polym. Eng. Sci. 2011 , 51 , 2335−2344..
Pu, C.; Lin, D.; Xu, H.; Liu, F.; Gao, H.; Tian, G.; Qi, S.; Wu, D. Clarifying the effect of chemical structure on high-temperature resistance of polyimides based on DFT and ReaxFF based molecular dynamic simulation. Polymer 2022 , 255 , 125119..
Masubuchi, T.; Sakai, M.; Kojio, K.; Furukawa, M.; Aoyagi, T. Structure and properties of aliphatic poly(carbonate) glycols with different methylene unit length. e-Journal of Soft Materials 2007 , 3 , 55−63..
Lu, Y.; Tu, Z.; Cheng, Y.; Liu, L.; Leng, X.; Wei, Z.; Li, Y. Kilogram-scale production of biodegradable poly(butylene carbonate): molecular weight dependence of physical properties and enhanced crystallization by nucleating agent. J. Polym. Environ. 2023 , 31 , 1510−1524..
[Zhao, T. P.; Ren, X. K.; Zhu, W. X.; Liang, Y. R.; Li, C. C.; Men, Y. F.; Liu, C. Y.; Chen, E. Q. “Brill transition” shown by green material poly(octamethylene carbonate). ACS Macro Lett . 2015 , 4 , 317-321..
Pérez-Camargo, R. A.; Liu, G.; Meabe, L.; Zhao, Y.; Sardon, H.; Müller, A. J.; Wang, D. Using successive self-nucleation and annealing to detect the solid-solid transitions in poly(hexamethylene carbonate) and poly(octamethylene carbonate). Macromolecules 2021 , 54 , 9670−9680..
Hung, Y.; Xiang, W.; Zou, Z.; Zhang, Y.; Wang, B.; Yu, C.; Zheng, Y.; Pan, P. Isodimorphic crystallization and thermally-induced crystal transitions in poly(octamethylene- ran -decamethylene carbonate): critical role of comonomer defects. Polymer 2023 , 274 , 125903..
Liao, Y.; Pérez-Camargo, R. A.; Sardon, H.; Martínez de Ilarduya, A.; Hu, W.; Liu, G.; Wang, D.; Müller, A. J. Challenging isodimorphism concepts: formation of three crystalline phases in poly(hexamethylene-ran-octamethylene carbonate) copolymers. Macromolecules 2023 , 56 , 8199−8213..
Liao, Y.; Pérez-Camargo, R. A.; Ma, T.; Maiz, J.; Martínez de Ilarduya, A.; Sardon, H.; Liu, G.; Wang, D.; Müller, A. J. Mixed isodimorphic/isomorphic crystallization in aliphatic random copolycarbonates. Macromolecules 2024 , 57 , 10227−10239..
Hollinger, J. O. Preliminary report on the osteogenic potential of a biodegradable copolymer of polyactide (PLA) and polyglycolide (PGA). J. Biomed. Mater. Res. 1983 , 17 , 71−82..
[Liang, J. Z.; Ma, W. Y. Young’s modulus and prediction of plastics/elastomer blends. J. Polym. Eng . 2012 , 32 , 343-348..
Feng, L.; Cui, C.; Li, Z.; Zhang, M.; Gao, S.; Zhang, Q.; Wu, Y.; Ge, Z.; Cheng, Y.; Zhang, Y. Kinetics of catalyzed thermal degradation of polylactide and its application as sacrificial templates. Chinese J. Chem. 2022 , 40 , 2801−2807..
Yu, Y.; Gao, B.; Liu, Y.; Lu, X. B. Efficient and selective chemical recycling of co2-based alicyclic polycarbonates via catalytic pyrolysis. Angew. Chem. Int. Ed. 2022 , 61 , e202204492..
Tundo, P.; Aricò, F. Reaction pathways in carbonates and esters. ChemSusChem 2023 , 16 , e202300748..
McGuire, T. M.; Ning, D.; Buchard, A.; Williams, C. K. The science of polymer chemical recycling catalysis: uncovering kinetic and thermodynamic linear free energy relationships. J. Am. Chem. Soc. 2025 , 147 , 22734−22746..
Zhao, W.; Guo, Z.; He, J.; Zhang, Y. Solvent-free chemical recycling of polyesters and polycarbonates by magnesium-based lewis acid catalyst. Angew. Chem. Int. Ed. 2025 , 64 , e202420688..
Feng, L. D.; Bian, X. C.; Li, G.; Chen, X. S. Effect of exogenous carboxyl and hydroxyl groups on pyrolysis reaction of high molecular weight poly(L-lactide) under the catalysis of tin. Chinese J. Polym. Sci. 2021 , 39 , 966−974..
Zhao, T.; Li, T.; Xin, Z.; Zou, L.; Zhang, L. A ReaxFF-based molecular dynamics simulation of the pyrolysis mechanism for polycarbonate. Energy & Fuels 2018 , 32 , 2156−2162..
Liu, Q.; Liu, S.; Lv, Y.; Hu, P.; Huang, Y.; Kong, M.; Li, G. Atomic-scale insight into the pyrolysis of polycarbonate by ReaxFF-based reactive molecular dynamics simulation. Fuel 2021 , 287 , 119484..
Su, T.; Lu, G. P.; Sun, K.; Wu, P.; Cai, C. Boosting the selective catalytic pyrolysis of plasticwaste polylactic acid to monomer. J. Environ. Chem. Eng. 2023 , 11 , 111397..
De Clercq, R.; Makshina, E.; Sels, B. F.; Dusselier, M. Catalytic gas-phase cyclization of glycolate esters: a novel route toward glycolide-based bioplastics. ChemCatChem 2018 , 10 , 5649−5655..
Qian, Y.; Wang, Z.; Chen, L.; Liu, P.; Jia, L.; Dong, B.; Li, H.; Xu, S. A study on the decomposition pathways of HTPB and HTPE pyrolysis by mass spectrometric analysis. J. Anal. Appl. Pyrol. 2023 , 170 , 105929..
Mao, C.; Zhou, S.; Qian, C.; Ruan, J.; Chen, X. Efficient dehydration of C6-10- α,ω -alkanediols to alkadienes as catalyzed by aliphatic acids. ACS Omega 2019 , 4 , 17588−17592..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621