

FOLLOWUS
a.Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
b.Anhui Polyrocks Hydro-friend Technology Co., Ltd., Anqing 246005, China
c.Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei 230009, China
hbwei@hfut.edu.cn (H.B.W.)
dingys@hfut.edu.cn (Y.S.D.)
Received:12 August 2025,
Accepted:05 September 2025,
Published Online:12 November 2025,
Published:15 December 2025
Scan QR Code
Wang, T.; Ma, M. X.; Chen, W. J.; Zuo, Y. F.; Wei, H. B.; Ding, Y. S. Reinforced poly(arylene quinuclidinium) membranes for anion exchange membrane water electrolysis. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3450-3
Tao Wang, Meng-Xiang Ma, Wei-Jie Chen, et al. Reinforced Poly(arylene quinuclidinium) Membranes for Anion Exchange Membrane Water Electrolysis[J/OL]. Chinese Journal of Polymer Science, 2025, 432386-2394.
Wang, T.; Ma, M. X.; Chen, W. J.; Zuo, Y. F.; Wei, H. B.; Ding, Y. S. Reinforced poly(arylene quinuclidinium) membranes for anion exchange membrane water electrolysis. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3450-3 DOI:
Tao Wang, Meng-Xiang Ma, Wei-Jie Chen, et al. Reinforced Poly(arylene quinuclidinium) Membranes for Anion Exchange Membrane Water Electrolysis[J/OL]. Chinese Journal of Polymer Science, 2025, 432386-2394. DOI: 10.1007/s10118-025-3450-3.
Anion exchange membrane water electrolysis (AEMWE) synergize the kinetic merits of alkaline systems
zero-gap configurations and compatibility with non-noble metal catalysts
offering a promising pathway toward green hydrogen production. Nevertheless
practical exploitation was hindered by critical challenges: inferior alkaline stability
insufficient mechanical integrity
and detrimental hydrogen crossover of anion exchange membranes (AEMs)
which compromise both device durability and operational safety. Here
we engineered a porous expanded polytetrafluoroethylene (e-PTFE)-reinforced poly(arylene quinuclidinium) membrane that enhances AEM mechanical robustness
prevents stress-induced rupture
and suppresses hydrogen crossover during electrolyzer operation. Specifically
the reinforced poly(arylene quinuclidinium) membrane (R-PTPQui) exhibited a tensile strength of 56 MPa and an elongation at break of 55%. Moreover
it effectively reduced hydrogen permeation in the electrolyzer
ach
ieving an extremely low H
2
-to-O
2
(HTO) value of 0.44 vol% at 0.1 A·cm
−2
. The R-PTPQui-based electrolyzer achieved a high current density of 4.9 A·cm
−2
at 2.0 V and a Faradaic efficiency of 98.6% using a non-precious anode catalyst. These advances significantly strength the compatibility of poly(arylene quinuclidinium)-based AEMs for industrial-scale green hydrogen generation.
Shi, W.; Shen, T.; Xing, C.; Sun, K.; Yan, Q.; Niu, W.; Yang, X.; Li, J.; Wei, C.; Wang, R.; Fu, S.; Yang, Y.; Xue, L.; Chen, J.; Cui, S.; Hu, X.; Xie, K.; Xu, X.; Duan, S.; Xu, Y.; Zhang, B. Ultrastable supported oxygen evolution electrocatalyst formed by ripening-induced embedding. Science 2025 , 387 , 791−796..
Zhang, Q.; Shan, Y.; Pan, J.; Kumar, P.; Keevers, M. J.; Lasich, J.; Kour, G.; Daiyan, R.; Perez-Wurf, I.; Thomsen, L.; Cheong, S.; Jiang, J.; Wu, K. H.; Chiang, C. L.; Grayson, K.; Green, M. A.; Amal, R.; Lu, X. A photovoltaic-electrolysis system with high solar-to-hydrogen efficiency under practical current densities. Sci. Adv. 2025 , 11 , eads0836..
Boettcher, S. W. Introduction to green hydrogen. Chem. Rev. 2024 , 124 , 13095−13098..
Yue, K.; Lu, R.; Gao, M.; Song, F.; Dai, Y.; Xia, C.; Mei, B.; Dong, H.; Qi, R.; Zhang, D.; Zhang, J.; Wang, Z.; Huang, F.; Xia, B. Y.; Yan, Y. Polyoxometalated metal-organic framework superstructure for stable water oxidation. Science 2025 , 388 , 430−436..
Henkensmeier, D.; Cho, W. C.; Jannasch, P.; Stojadinovic, J.; Li, Q.; Aili, D.; Jensen, J. O. Separators and membranes for advanced alkaline water electrolysis. Chem. Rev. 2024 , 124 , 6393−6443..
Wang, T.; Wang, Y.; You, W. Vinylic-addition polynorbornene-based anion-exchange membranes with semi-interpenetrating polymer networks for water electrolysis. Chinese J. Polym. Sci. 2024 , 42 , 1888−1896..
Ge, X.; Zhang, F.; Wu, L.; Yang, Z.; Xu, T. Current challenges and perspectives of polymer electrolyte membranes. Macromolecules 2022 , 55 , 3773−3787..
Yang, Y.; Peltier, C. R.; Zeng, R.; Schimmenti, R.; Li, Q.; Huang, X.; Yan, Z.; Potsi, G.; Selhorst, R.; Lu, X.; Xu, W.; Tader, M.; Soudackov, A. V.; Zhang, H.; Krumov, M.; Murray, E.; Xu, P.; Hitt, J.; Xu, L.; Ko, H.-Y.; Ernst, B. G.; Bundschu, C.; Luo, A.; Markovich, D.; Hu, M.; He, C.; Wang, H.; Fang, J.; DiStasio, R. A., Jr.; Kourkoutis, L. F.; Singer, A.; Noonan, K. J. T.; Xiao, L.; Zhuang, L.; Pivovar, B. S.; Zelenay, P.; Herrero, E.; Feliu, J. M.; Suntivich, J.; Giannelis, E. P.; Hammes-Schiffer, S.; Arias, T.; Mavrikakis, M.; Mallouk, T. E.; Brock, J. D.; Muller, D. A.; DiSalvo, F. J.; Coates, G. W.; Abruña, H. D. Electrocatalysis in alkaline media and alkaline membrane-based energy technologies. Chem. Rev. 2022 , 122 , 6117−6321..
Wang, W.; Cao, D. F.; Sun, X. W.; Pan, L.; Ma, Z.; Li, Y. S. The influence of various cationic group on polynorbornene based anion exchange membranes with hydrophobic large steric hindrance arylene substituent. Chinese J. Polym. Sci. 2023 , 41 , 278−287..
Olsson, J. S.; Pham, T. H.; Jannasch, P. Poly(arylene piperidinium) hydroxide ion exchange membranes: synthesis, alkaline stability,and conductivity. Adv. Funct. Mater. 2018 , 28 , 1702758..
Peng, H.; Li, Q.; Hu, M.; Xiao, L.; Lu, J.; Zhuang, L. Alkaline polymer electrolyte fuel cells stably working at 80 °C. J. Power Sources 2018 , 390 , 165−167..
Wang, J.; Zhao, Y.; Setzler, B. P.; Rojas-Carbonell, S.; Ben Yehuda, C.; Amel, A.; Page, M.; Wang, L.; Hu, K.; Shi, L.; Gottesfeld, S.; Xu, B.; Yan, Y. Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells. Nat. Energy 2019 , 4 , 392−398..
Song, W.; Peng, K.; Xu, W.; Liu, X.; Zhang, H.; Liang, X.; Ye, B.; Zhang, H.; Yang, Z.; Wu, L.; Ge, X.; Xu, T. Upscaled production of an ultramicroporous anion-exchange membrane enables long-term operation in electrochemical energy devices. Nat. Commun. 2023 , 14 , 2732..
Zheng, W.; He, L.; Tang, T.; Ren, R.; Lee, H.; Ding, G.; Wang, L.; Sun, L. Poly(dibenzothiophene-terphenyl piperidinium) for high-performance anion exchange membrane water electrolysis. Angew. Chem. Int. Ed. 2024 , 63 , e202405738..
Hu, C.; Lee, Y. J.; Ma, Y.; Zhang, X.; Jung, S. W.; Hwang, H.; Cho, H. K.; Kim, M.-G.; Yoo, S. J.; Zhang, Q.; Lee, Y. M. Advanced patterned membranes for efficient alkaline membrane electrolyzers. ACS Energy Lett. 2024 , 9 , 1219−1227..
Pang, M.; Xu, Z.; Lin, D.; Zhen, Y.; Tian, J.; Liu, J.; Xu, Q.; Wang, B. Facilitating rapid OH − /H 2 O transport in anion exchange membranes via ultra-stable heteroatom-free micropores. Angew. Chem. Int. Ed. 2025 , 64 , e202418435..
Zhang, J.; Pan, J.; Yuan, Y.; Zhang, Q.; Fang, P.; Zhang, H.; Yu, Q.; Zhou, T.; Sun, Z.; Yan, F. In-situ gradient cross-linking in anion exchange membranes for water electrolyzers. Chem. Mater. 2024 , 36 , 5720−5729..
Ling, Q.; Wang, C.; Wang, T.; Yang, S.; Li, X.; Wei, H.; Ding, Y. Beyond small molecular cations: elucidating the alkaline stability of cationic moieties at the membrane scale. ChemSusChem 2024 , 17 , e202301656..
Wang, T.; Chen, D.; Wang, C.; Wei, H.; Ding, Y. Isomeric poly(arylene piperidinium) electrolyte membranes with high alkaline durability. Adv. Funct. Mater. 2025 , 35 , 2422504..
Wang, C.; Wang, T.; Chen, D.; Ling, Q.; Liu, C.; Li, X.; Wei, H.; Ding, Y. Insights into the alkaline stability of poly(arylene piperidinium)s. Macromolecules 2025 , 58 , 8335−8343..
Bakvand, P. M.; Pan, D.; Allushi, A.; Jannasch, P. Tuning the performance of poly(quaterphenyl piperidinium) anion-exchange membranes by monomer configuration. Adv. Energy Mater. 2025 , 15 , 2402869..
Yin, L.; Ren, R.; He, L.; Lee, H.; Zhang, Q.; Ding, G.; Wang, L.; Sun, L. Polyarylmethylpiperidinium (PAMP) for next generation anion exchange membranes. Angew. Chem. Int. Ed. 2025 , 64 , e202503715..
Zhang, L.; Yang, X.; Xu, M.; Zhang, J.; Ding, Y.; Wei, H. Achieving ultrastable poly(m-terphenylene alkylene) anion exchange membranes through quinuclidinium cation and spacer optimization. J. Membr. Sci. 2025 , 733 , 124326..
Yin, L.; Ren, R.; He, L.; Zheng, W.; Guo, Y.; Wang, L.; Lee, H.; Du, J.; Li, Z.; Tang, T.; Ding, G.; Sun, L. Stable anion exchange membrane bearing quinuclidinium for high-performance water electrolysis. Angew. Chem. Int. Ed. 2024 , 63 , e202400764..
Yu, X.; Li, Z.; Gu, Y.; Zhang, Y.; Sun, B.; Zhao, R.; Wang, Y.; Wang, Z. Highly alkali stable poly(biphenyl-piperidine-isatin) anion exchange membranes with grafted quinuclidine side chains. J. Membr. Sci. 2025 , 732 , 124261..
Zeng, M.; He, X.; Wen, J.; Zhang, G.; Zhang, H.; Feng, H.; Qian, Y.; Li, M. N-methylquinuclidinium-based anion exchange membrane with ultrahigh alkaline stability. Adv. Mater. 2023 , 35 , 2306675..
Deng, G.; Liao, Y.; Lin, Y.; Ding, L.; Wang, H. Engineering robust triazine crosslinked and pyridine capped anion exchange membrane for advanced water electrolysis. Angew. Chem. Int. Ed. 2024 , 63 , e202412632..
[Xie, X.; Song, J.; Fan, X.; Zhao, W.; Liu, K.; Zhao, Y.; Zhou, L.; Xiao, Y.; Li, S.; Wang, H.; Zhao, G.; Xie, F.; Song, B.; Guo, Q.; Jiao, X.; He, P.; Liu, F.; Zhang, Y. Ultra-efficient hydrogen crossover suppression achieved by precise Pt hybridization in thin Nafion membranes for water electrolyzer. Adv. Funct. Mater . 2025 , 2504467.
Sadeghi Alavijeh, A.; Bhattacharya, S.; Thomas, O.; Chuy, C.; Yang, Y.; Zhang, H.; Kjeang, E. Effect of hygral swelling and shrinkage on mechanical durability of fuel cell membranes. J. Power Sources 2019 , 427 , 207−214..
Crum, M.; Liu, W. Effective testing matrix for studying membrane durability in PEM fuel cells: part 2. mechanical durability and combined mechanical and chemical durability. ECST 2006 , 3 , 541−550..
Cha, J. E.; Jang, S.; Seo, D. J.; Hwang, J.; Seo, M. H.; Choi, Y. W.; Kim, W. B. A reinforced composite membrane of two-layered asymmetric structure with Nafion ionomer and polyethylene substrate for improving proton exchange membrane fuel cell performance. Chem. Eng. J. 2023 , 454 , 140091..
Liu, F.; Kim, I. S.; Miyatake, K. Proton-conductive aromatic membranes reinforced with poly(vinylidene fluoride) nanofibers for high-performance durable fuel cells. Sci. Adv. 2023 , 9 , eadg9057..
[Qelibari, R.; Ortiz, E. C.; van Treel, N.; Lombeck, F.; Schare, C.; Muenchinger, A.; Dumbadze, N.; Titvinidze, G.; Klose, C.; Vierrath, S. 74 μm PEEK-reinforced sulfonated poly(phenylene sulfone)-membrane for stable water electrolysis with lower gas crossover and lower resistance than Nafion N115. Adv. Energy Mater . 2024, 14 , 2303271..
Hu, C.; Lee, J. Y.; Lee, Y. J.; Kim, S. H.; Hwang, H.; Yoon, K. S.; Park, C. D.; Lee, S. Y.; Lee, Y. M. Reinforced poly(dibenzyl-co-terphenyl piperidinium) membranes for highly durable anion-exchange membrane water electrolysis at 2 A cm −2 for 1000 h. Next Energy 2023 , 1 , 100044..
Zou, W.; Peng, K.; Ling, R.; Li, Q.; Liu, Y.; Xu, T.; Yang, Z. Robust and ultrathin pore-filling anion exchange membranes forwater electrolysis. AIChE J. 2025 , 71 , e18769..
Zuo, Y.; Li, Y.; Chen, W.; Chen, Y.; Li, C.; Ding, Y.; Wu, L.; Wei, H. Reinforced poly(arylene alkylene) anion exchange membranes with superior robustness for alkaline fuel cells and water electrolyzers. Chem. Eng. J. 2025 , 522 , 167359..
Lee, S.; Sul, T.; Kim, U.; Kim, S.; Chae, J. E.; Kim, J.; Kim, S. M.; Jang, S. Hydrocarbon-based ionomer/PTFE-reinforced composite membrane through multibar coating technique for durable fuel cells. Adv. Mater. Technol. 2025 , 10 , 2400669..
Hong, S. J.; Yoon, S. J.; Kim, T.-H.; Lee, J. Y.; Oh, S.-G.; Hong, Y. T.; So, S.; Yu, D. M. Alcohol-treated porous PTFE substrate for the penetration of PTFE-incompatible hydrocarbon-based ionomer solutions. Langmuir 2021 , 37 , 3694−3701..
Hu, C.; Kang, H. W.; Jung, S. W.; Zhang, X.; Lee, Y. J.; Kang, N. Y.; Park, C. H.; Lee, Y. M. Stabilizing the catalyst layer for durable and high performance alkaline membrane fuel cells and water electrolyzers. ACS Cent. Sci. 2024 , 10 , 603−614..
Xu, Z.; Wan, L.; Liao, Y.; Wang, P.; Liu, K.; Wang, B. Anisotropic anion exchange membranes with extremely high water uptake for water electrolysis and fuel cells. J. Mater. Chem. A 2021 , 9 , 23485−23496..
Thuc, V. D.; Kim, D. Ultra-thin, mechanically durable reinforced sulfonated poly(fluorenyl biphenyl) indole proton exchange membrane for fuel cell. J. Membr. Sci. 2024 , 694 , 122393..
[Han, J.; Wang, Z.; Fan, L.; Tongsh, C.; Xu, Y.; Du, Q.; Jiao, K. Correlating the in-plane and through-plane proton conductivity and equilibrium water content of state-of-the-art proton exchange membranes. Adv. Funct. Mater . 2025, e13442..
Tang, Y.; Kusoglu, A.; Karlsson, A. M.; Santare, M. H.; Cleghorn, S.; Johnson, W. B. Mechanical properties of a reinforced composite polymer electrolyte membrane and its simulated performance in PEM fuel cells. J. Power Sources 2008 , 175 , 817−825..
Feng, Z.; Gupta, G.; Mamlouk, M. Robust poly(p-phenylene oxide) anion exchange membranes reinforced with pore-filling technique for water electrolysis. J. Appl. Polym. Sci. 2024 , 141 , e55340..
Hu, X.; Hu, B.; Niu, C.; Yao, J.; Liu, M.; Tao, H.; Huang, Y.; Kang, S.; Geng, K.; Li, N. An operationally broadened alkaline water electrolyser enabled by highly stable poly(oxindole biphenylene) ion-solvating membranes. Nat. Energy 2024 , 9 , 401−410..
Wen, J.; He, X.; Zhang, G.; Zeng, M.; Qian, Y.; Li, M. Poly(aryl N-methyl quinuclidinium) anion exchange membrane with both ultra-high alkaline stability and dimensional stability. Sci. China Mater. 2024 , 67 , 965−973..
Bakvand, P. M.; Jannasch, P. Highly alkali-stable zwitterionic poly(arylene quinuclidinium) anion exchange membranes. J. Membr. Sci. 2025 , 717 , 123656..
Xiao, S.; Zhang, Y.; Zhang, F.; Wang, L.; Wang, S.; Wang, J. A simple cation substitution strategy to regulate the morphology and properties of anion exchange membrane for fuel cells. J. Membr. Sci. 2025 , 718 , 123671..
He, X.; Feng, H.; Wen, J.; Su, Q.; Wang, X.; Cai, Z.; Qian, Y.; Zhang, H.; Li, M. High stable poly (terphenyl-co-f luorene quinuclidinium) anion exchange membrane for alkaline water electrolysis. Int. J. Hydrogen Energy 2024 , 86 , 808−814..
Martin, A.; Trinke, P.; Bensmann, B.; Hanke-Rauschenbach, R. Hydrogen crossover in PEM water electrolysis at current densities up to 10 A cm −2 . J. Electrochem. Soc. 2022 , 169 , 094507..
[ Multi-year program plan (US department of energy, 2024 ); https://www.energy.gov/sites/default/files/2024-05/hfto-mypp-2024.pdf.
Trinke, P.; Keeley, G. P.; Carmo, M.; Bensmann, B.; Hanke-Rauschenbach, R. Elucidating the effect of mass transport resistances on hydrogen crossover and cell performance in PEM water electrolyzers by varying the cathode ionomer content. J. Electrochem. Soc. 2019 , 166 , F465−F471..
Kong, T. H.; Cha, J.; Lee, H.; Park, N.; Kwon, S.; You, H.; Cha, S. G.; Kwon, Y. A cathode is the key contributor to the initial degradation of anion exchange membrane water electrolyzers. ACS Energy Lett. 2025 , 10 , 3647−3654..
Ishikawa, H.; Teramoto, T.; Ueyama, Y.; Sugawara, Y.; Sakiyama, Y.; K usakabe, M.; Miyatake, K.; Uchida, M. Use of a sub-gasket and soft gas diffusion layer to mitigate mechanical degradation of a hydrocarbon membrane for polymer electrolyte fuel cells in wet-dry cycling. J. Power Sources 2016 , 325 , 35−41..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621